The Site Preference of Alloying Element Zr in NiAl Dislocation Core and its Effects on Bond Characters

Article Preview

Abstract:

NiAl is one kind of high-temperature alloys with broad potential applications in aerospace industry. Its mechanical properties are believed to be largely related to the dislocation behavior and impurity-dislocation interaction. In the paper we report first principles study of the alloying effect of Zr in the [10(010) edge dislocation core of NiAl. The binding energy of doping system decreases 3.77 eV when a Zr atom substituted for an Al, only decreases 1.06 eV with substitution for a Ni atom. The result of the binding energy shows that a Zr atom prefers to occupy an Al site in the dislocation core of NiAl. The analyses of the charge distribution, the interatomic energy and the partial density of states suggest that Zr will greatly enhance the interaction between Zr atom and neighboring host atoms, as well as that between host atoms. These results show that the alloying element Zr induced pinning effect on the edge dislocation motion is predicted, and could be helpful for understanding microscopic mechanisms of alloying-induce hardening in NiAl alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-26

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Darolia: Journal of Materials Science and Technology, 10 (1994) 157

Google Scholar

[2] A. Misra and R. Gibala: Intermetallics, 8 (2000) 1025

Google Scholar

[3] K. Parlinski, P. T. Jochym, H. Schober, A. Jianu, J. Dutkiewicz and W. Maziarz: Physical Review B, 70 (2004) 224304

DOI: 10.1103/physrevb.70.224304

Google Scholar

[4] P. Lazar and R. Podloucky: Physical Review B, 73 (2006) 104114

Google Scholar

[5] C. Jiang, D. J. Sordelet and B. Gleeson: Scripta Materialia, 55 (2006) 759

Google Scholar

[6] X. L. Hu, Y. Zhang, G. H. Lu, T. M. Wang, P. H. Xiao, P. G. Yin and H. B. Xu: Intermetallics, 17 (2009) 358

Google Scholar

[7] I. Ozfidan, K. Y. Chen and M. Fu: Metallurgical and Materials Transactions A, 42 (2011) 4126

Google Scholar

[8] D. Golberg and G..Sauthoff: Intermetallics, 4 (1996) 253

Google Scholar

[9] T. Takasugi, J. Kishino and S. Hanada: Acta Metallurgica. Materialia, 41 (1993)1009

Google Scholar

[10] J. Hu and D. L. Liu: Materials Science and Engineering A, 490 (2008) 157

Google Scholar

[11] C. Yang: International Journal of Mechanical Sciences, 48 (2006) 950

Google Scholar

[12] B. Ghosh and M. A. Crimp: Materials Science and Engineering A, 239-240 (1997) 142

Google Scholar

[13] F. Ebrahimi and S. Shrivastava: Acta Materialia, 46 (1998) 1493

Google Scholar

[14] T. M. Pollock, D. C. Lu, X. Shi and K. Eow: Materials Science and Engineering A, 317 (2001) 241

Google Scholar

[15] R. Jayaram and M. K..Miller: Scripta Metallurgica et Materialia, 33 (1995 ) 19

Google Scholar

[16] B. Delley: Journal of Chemical Physics, 94 (1991) 7245

Google Scholar

[17] B. Delley: Journal of Chemical Physics, 92 (1990) 508

Google Scholar

[18] Y. Niu, S. Y. Wang, D. L. Zhao and C. Y. Wang: Journal of Physics: Condensed Matter, 13 (2001) 4267

Google Scholar

[19] J. A. Yan, C. Y. Wang, W. H. Duan and S. Y. Wang: Physical Review B, 69 (2004) 214110

Google Scholar

[20] L. Q. Chen and T. Yu: Sci. China: Physics, Mechanics & Astronomy, 54 ( 2011) 815

Google Scholar

[21] A. F. Voter and S. P. Chen: High temperature ordered intermetallic alloys, edited by Siegel R W et al., MRS Symposia Proceeding No. 82 (1987) (Materials Research Society, Pittsburgh ) p.175.

Google Scholar

[22] Y. Song, Z. X. Guo, R. Yang and D. Li: Acta Mater. 49 (2001) 1647

Google Scholar

[23] C. Y. Wang: Defect and Diffusion. Forum, 125-126 (1995)79

Google Scholar