Investigating the Pitting Resistance of 316 Stainless Steel in Ringer's Solution Using the Cyclic Polarization Technique

Article Preview

Abstract:

Corrosion rate, corrosion potential and susceptibility to pitting corrosion of a metal are measured using cyclic polarization Direct Current (DC) electrochemical technique. The aim of the present research is to investigate the pit nucleation resistance of polished, ground and passivated surfaces of 316 stainless steels in Ringers solution. The electrochemical cyclic polarization results showed that polished surface gave better pitting resistance as compared to ground surface. It was also observed that passivation treatment gave better pitting resistance to both polished and ground surface of 316 stainless steels in Ringers solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-7

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Shahryari et al., Materials Science and Engineering C, 28, p.94–106, 2008.

Google Scholar

[2] 'Corrosion Engineering', Mars G. Fontana, 3rd Edition, Tata McGraw-Hall Edition, p.226, 2005.

Google Scholar

[3] J. S. Noh, N.J. Laycock, W. Gao, D.B. Wells, Corr. Sci. 42, pp.2069-2083, 2000.

Google Scholar

[4] C.-C. Shih, C.-M. Shih, Y.-Y. Su, L.H.J. Su, M.-S. Chang, S.-J. Lin, Corr. Sci., 46, p.427, 2004.

Google Scholar

[5] T. Hong, T. Ogushi, M. Nagumo, Corr. Sci., 38, pp.881-888, 1996.

Google Scholar

[6] G. Lothongkum, S. Chaikittisilp, A.W. Lothongkum, Appl. Surf. Sci., 218, p.202, 2003.

Google Scholar

[7] R. F. A. Jargelius-Petterson, B.G. Pound, J. Electrochem. Soc., 145, pp.1462-1469, 1998.

Google Scholar

[8] J. L. Polo, E. Cano, J.M. Bastidas, J. Electroanal. Chem., 537, pp.183-187, 2002.

Google Scholar

[9] R. Merello, F.J. Botana, J. Botella, M.V. Matres, M. Marcos, Corr. Sci., 45, pp.909-921, 2003.

Google Scholar

[10] T. Suter, H. Bohni, Electrochim. Acta, 42, pp.3275-3280, 1997.

Google Scholar

[11] M.P. Ryan, D.E. Williams, R.J. Chater, B.M. Hutton, D.S. McPhail, Nature, 415, pp.770-774, 2002.

DOI: 10.1038/415770a

Google Scholar

[12] Q. Zhang, R. Wang, M. Kato, K. Nakasa, Script. Mater., 52, pp.227-230, 2005.

Google Scholar

[13] M. A. Barbosa, Corr. Sci., 23, pp.1293-1305, 1983.

Google Scholar

[14] S. Maximovitch, G. Barral, F. le Cras, F. Claudet, Corr. Sci., 37, p.271, 1995.

Google Scholar

[15] M. Kraack, H. Boehni, W. Muster, J. Patscheider, Surf. Coat. Technol., 68/69, pp.541-545, 1994.

DOI: 10.1016/0257-8972(94)90214-3

Google Scholar

[16] Q. Y. Pan, W.D. Huang, R.G. Song, Y.H. Zhou, G.L. Zhang, Surf. Coat. Technol., 102, pp.245-255, 1998.

Google Scholar

[17] F. Mansfeld, C.B. Breslin, A. Pardo, F.J. Perez, Surf. Coat. Technol., 90, p.224, 1997.

Google Scholar

[18] S. Fujimoto, T. Yamada, T. Shibata, J. Electrochem. Soc., 145, L79, 1998.

Google Scholar

[19] A. Parsapour, M.H. Fathi, M. Salehi, A. Saatchi and M. Mehdikhani, International Journal of ISSI, 4, 1,2, pp.34-38, 2007.

Google Scholar

[20] S. Kannan, A. Balamurugan, S. Rajeswari, Electrochimica Acta, 49, pp.2395-2403, 2004.

Google Scholar

[21] ASTM G5: American Society for Testing and Materials, 03.02, p.48, 1995.

Google Scholar

[22] ASTM F 746, 33, p.221, 1977.

Google Scholar

[23] Urs I. Thomann, Peter J. Uggowitzer, Wear, 239, pp.48-58, 2000.

Google Scholar

[24] ASTM F86, American Society for Testing and Materials, 13.01, p.7, 1998.

Google Scholar

[25] J. R. Galvele in "Passivity of Metals", R. P. Frankenthal and J. Kruger, The Electrochemical Society, Princeton, NJ, Eds., p.285, 1978.

Google Scholar

[26] H. P. Leckie and H. H. Uhlig, J. Electrochem. Soc., 113, 1262, 1966.

Google Scholar

[27] L. J. Oblonsky, M. P. Ryan, and H. S. Isaacs, J. Electrochem. Soc., 145, 1922,1998.

Google Scholar

[28] K. Sieradzki and R. C. Newman, J. Electrochem. Soc., 133, 1979,1986.

Google Scholar

[29] H. Böhni and H. H. Uhlig, J. Electrochem. Soc., 116, 906, 1969.

Google Scholar