Synthesis and Electroluminescence of Silver Doped ZnS/PVK Nanocomposite

Article Preview

Abstract:

Sulfide based luminescent materials have attracted a lot of attention for a wide range of photo-and electroluminescence applications. Among the sulfides, ZnS is promising host material for development of phosphors in different visible emission bands. Doping of Ag can affect the electroluminescence of the host material. Incorporation of host ZnS into the polymer matrix is one of the best method to display their special functions, which stabilize the nanoparticles. Here we report a synthesis and electroluminescence of silver doped ZnS/PVK nanocomposites thin films. Reported films were prepared by using chemical route with varying Ag doping and ZnS loading in the composite. Structural and morphological characterization were carried out through XRD and SEM techniques, which confirmed the particles in nanoregime. Though optical absorption spectra and band gap of ZnS semiconductor nanoparticles in ZnS:Ag/PVK matrix were estimated, and using EMA model, particle size was calculated which supports the results of XRD. Electroluminescence of nanocomposite samples was studied and it was found that threshold voltage depends on doping of Ag and also on loading of ZnS. Voltage brightness characteristics support the production of EL by acceleration-collision mechanism.Contents of Paper

You might also be interested in these eBooks

Info:

Periodical:

Pages:

231-243

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Gass, P. Poddar, J. Almand, S. Srinath, H. Srikanth, Superparamagnetic Polymer Nanocomposites with Uniform Fe3O4 Nanoparticle Dispersions, Adv. Funct. Mater. 16 (2006) 71.

DOI: 10.1002/adfm.200500335

Google Scholar

[2] M. Lee, B. W. Kim, J .D. Nam, Y. Lee, Y. Son, S. Seo, In Situ formation of gold nanoparticle/conducting polymer nanocomposites, J. Mol. Cryst. Liq. Cryst. 407 (2003) 397-402.

DOI: 10.1080/744819006

Google Scholar

[3] D. K. Avasthi, Y. K. Mishra, D. Kabiraj, N. P. Lalla, J.C. Pivin, Synthesis of metal–polymer nanocomposite for optical applications. Nanotech. 18 (2007) 1- 4.

DOI: 10.1088/0957-4484/18/12/125604

Google Scholar

[4] J. Zhu, Y. Zhu, Microwave-assisted one step synthesis of polyacrsiamide-metal (M= Ag, P+, Cu) nanocomposites in qtheleneglycol, J. Phys. Chem. B 110 (2006) 8593-8597.

DOI: 10.1021/jp060488b

Google Scholar

[5] M. K. Corbierre, N. S. Cameron, M. Sutton, K. Laaziri,R. B. Lennox, Gold nanoparticle/polymer nanocomposites: dispersion of nanoparticles as a function of capping agent molecular weight and grafting density, Langmuir 21 ( 2005) 6063-6072.

DOI: 10.1021/la047193e

Google Scholar

[6] B. C. Sih, M. O. Wolf, Metal nanoparticle-conjugated polymer nanocomposites, Chem. Comm. (2005) 3375-3384.

Google Scholar

[7] A. B. R. Mayer, Colloidal metal nanoparticles dispersed in amphiphilic polymers, Polym. Adv. Technol. 12 (2001) 96-106.

DOI: 10.1002/1099-1581(200101/02)12:1/2<96::aid-pat943>3.0.co;2-g

Google Scholar

[8] U Schurmann, W. Hartung, H. Takele, V. Zaporojtchenko, F. Faupel, Controlled syntheses of Ag-PTFE nanocomposite thin films by co-sputtering from two magnetron sources, Nanotech. 16 (2005) 1078-1082.

DOI: 10.1088/0957-4484/16/8/014

Google Scholar

[9] W. K. Son, J. H. Youk, W. H. Park, Antimicrobial cellulose acetate nanofibers containing silver nanoparticles, Carbohydrate Polym. 65 (2006) 430- 434.

DOI: 10.1016/j.carbpol.2006.01.037

Google Scholar

[10] K. Naka, H. Itoh, S. Park, Y. Chujo, Synthesis of Nanocomposites of Metal Nanopartilces Utilizing Miscible Polymers, Polymer Bull. 52 (2004) 171-176.

DOI: 10.1007/s00289-004-0269-x

Google Scholar

[11] L. Balan, D. Burget, Synthesis of metal/polymer nanocomposite by UV-radiation curing, Eur. Polym. J. 42 (2006) 3180-3189.

DOI: 10.1016/j.eurpolymj.2006.08.016

Google Scholar

[12] H. Huang, Q. Yuan, X. Yang, Preparation and characterization of metal–chitosan nanocomposites Colloid and Surface B: Biointerfaces 39 (2004) 31-37.

Google Scholar

[13] J. Y. Lee, Y. Liao, R. Nagahata, S. Ahoriuchi, Effect of metal nanoparticles on thermal stabilization of polymer/metal nanocomposites prepared by a one step dry process. Polym. 47 (2006) 7970-7979.

DOI: 10.1016/j.polymer.2006.09.034

Google Scholar

[14] M. Sangermano, Y. Yagci, G. Rizza, In situ synthasis of silver-epoxy nanocomposites by photoinduced electron transfer and cationic polymerization process Macromol, 40 (2007) 882-8829.

DOI: 10.1021/ma702051g

Google Scholar

[15] Y. Wang, N. Herron, Photoconductivity of CdS nanocluster-doped polymers, Chem. Phys. Lett. 200 (1992) 71.

Google Scholar

[16] A. Guinier, X-ray diffraction in crystals, imperfect crystals, and amorphous bodies, Freeman, San Francisco, CA, USA, (1963).

DOI: 10.1126/science.142.3599.1564

Google Scholar

[17] P. Chouksey, B. P. Chandra, M. Ramrakhiani, Electroluminescence of CdS nanoparticles-poyvinyle carbazole composites, Indian J. of Engg. & Sci. 16 (2009) 157.

Google Scholar

[18] N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, Photophysical properties of ZnS nano-crystal, J. Appl. Phys. 88 (2000) 6260-6264.

DOI: 10.1063/1.1321027

Google Scholar

[19] P. E. Lippens, M. Lannoo, Optical properties of II-VI semiconductor nanocrystals, Semi. Sci. Tech. 6 (1991) A157- A160.

DOI: 10.1088/0268-1242/6/9a/030

Google Scholar

[20] P. Zalm, G. Diemer, H. A. Klasens, Some Aspects of the Voltage and Frequency Dependence of Electroluminescent Zinc Sulphide, Philip Research Reports 10 (1955) 205.

Google Scholar