Modeling the Nitrogen Diffusion Enhancement Resulting from a NanoPeening® Treatment on a Pure Iron – Influence of the Grain Morphology

Article Preview

Abstract:

It is well known that nanocrystalline materials have enhanced diffusion properties due to their high grain boundary density which act as fast diffusion channels compared to the lattice. In this paper, we aim at simulating the nitriding process of a pure iron nanostructured by NanoPeening® process. We use a simple diffusional approach taking into account the grain size and the grain morphology resulting from the NanoPeening® treatment. EBSD measurements are carried out to extract morphological parameters which are used in the homogenization method to extract the effective diffusivity distribution. Then a 1D diffusion simulation is performed with this distribution and shows that the grain morphology resulting from the NanoPeening® treatment does not deteriorate the diffusion properties of the material but in fact, improves the nitrogen penetration depth and the diffusion kinetics in addition to the effect of the grain size reduction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

178-185

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Lu et J. Lu, «Nanostructured surface layer on metallic materials induces by surface mechanical attrition treatment, » Materials Science & Engineering, A, Vols. %1 sur %2375-377, pp.38-45, (2004).

DOI: 10.1016/j.msea.2003.10.261

Google Scholar

[2] T. Roland, D. Retraint, K. Lu et J. Lu, «Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment, » Scr. Mater., vol. 54, pp.1949-1954, (2006).

DOI: 10.1016/j.scriptamat.2006.01.049

Google Scholar

[3] N. Tao, Z. Wang, W. Tong, M. Sui, J. Lu et K. Lu, «An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, » Acta Mater., vol. 50, pp.4603-4616, (2002).

DOI: 10.1016/s1359-6454(02)00310-5

Google Scholar

[4] W. Tong, N. Tao, Z. Wang, J. Lu et K. Lu, «Nitriding Iron at Lower Temperatures, » Science, vol. 299, pp.686-688, (2003).

DOI: 10.1126/science.1080216

Google Scholar

[5] H. -W. Zhang, L. Wang, Z. -K. Hei, G. Liu, J. Lu et K. Lu, «Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structures surface layer, » Z. Metallkd., vol. 10, pp.1143-1147, (2003).

DOI: 10.3139/146.031143

Google Scholar

[6] Y. Lin, J. Lu, L. Wang, T. Xu et Q. Xue, «Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel, » Acta Mater., vol. 54, pp.5599-5605, (2006).

DOI: 10.1016/j.actamat.2006.08.014

Google Scholar

[7] W. -P. Tong, C. Liu, W. Wang, N. -R. Tao, Z. -B. Wang, L. Zuo et J. -C. He, «Gaseous nitriding of iron with a nanostructured surface layer, » Scr. Mater., vol. 57, pp.533-536, (2007).

DOI: 10.1016/j.scriptamat.2007.05.017

Google Scholar

[8] S. -M. Hassani-Gangaraj, A. Moridi, M. Guagliano, A. Ghidini et M. Boniardi, «The effect of nitriding, severe shot peening and their combination on the fatigue behavior and micro-structure of a low-alloy steel, » International Journal of Fatigue , vol. 62, pp.67-76, (2014).

DOI: 10.1016/j.ijfatigue.2013.04.017

Google Scholar

[9] S. -M. Hassani-Gangaraj, A. Moridi, M. Guagliano et A. Ghidini, «Nitriding duration reduction without sacrificing mechanical characteristics and fatigue behavior: The beneficial effect of surface nano-crystallization by prior severe shot peening, » Materials & Design, vol. 55, pp.492-498, (2014).

DOI: 10.1016/j.matdes.2013.10.015

Google Scholar

[10] T. Prezeau, T. Muller, E. Dransart et Y. Giraud, «Amélioration par un prétraitement mécanique de NanoPeening, des performances des traitements thermochimiques : Cas de la nitruration et de la carbonitruration basse pression., » Traitements et Matériaux, vol. 412, pp.37-43, (2011).

DOI: 10.51257/a-v1-m1224

Google Scholar

[11] D. Gryaznov, J. Fleig et J. Maier, «Finite element simulation of diffusion into polycrystalline materials, » Solid State Sci., vol. 10, pp.754-760, (2008).

DOI: 10.1016/j.solidstatesciences.2008.03.030

Google Scholar

[12] I. -V. Belova et G. -E. Murch, «Diffusion in nanocrystalline materials, » Journal of Physics and Chemistry of Solids , vol. 64, pp.873-878, (2003).

DOI: 10.1016/s0022-3697(02)00421-3

Google Scholar

[13] L. Bassman, N. Ibrahim, P. Pinsky, K. Saraswat et M. Deal, «Mesoscale Modeling of Diffusion in Polycrystalline Structures, » chez Simulation of Semiconductor Processes and Devices, 1997. SISPAD '97., 1997 International Conference on, (1997).

DOI: 10.1109/sispad.1997.621359

Google Scholar

[14] E. Hart, «On the role of dislocations in bulk diffusion, » Acta Metallurgica, vol. 5, p.597, (1957).

Google Scholar

[15] V. Lacaille, E. Feulvarch, G. Kermouche, C. Morel et J. -M. Bergheau, «Finite element analysis of the grain size effect on diffusion in polycrystalline materials, » Com. Mat. Sci., (2014).

DOI: 10.1016/j.commatsci.2014.07.026

Google Scholar

[16] V. Lacaille, G. Kermouche, D. -Y. Tumbajoy-Spinel, E. Feulvarch, C. Morel et J. -M. Bergheau, «Modeling the nitriding enhancement resulting from the NanoPeening treatment of a pure iron, » IOP Conf. Series : Materials Science and Engineering, vol. 63, (2014).

DOI: 10.1088/1757-899x/63/1/012124

Google Scholar

[17] «DREAMD 3D, » 2014. [En ligne]. Available: http: /dream3d. bluequartz. net.

Google Scholar

[18] C. Herzig et Y. Mishin, chez Diffusion in Condensed Matter Chap. 8, Springer, 2005, pp.337-366.

Google Scholar

[19] «Sysweld User's manual, » (2014).

Google Scholar

[20] W. -P. Tong, Z. Han, L. -M. Wang, J. Lu et K. Lu, «Low-temperature nitriding of 38CrMoAl steel with a nanostructured surface layer induced by surface mechanical attrition treatment, » Surf. Coat. Tech., vol. 202, pp.4957-4963, (2008).

DOI: 10.1016/j.surfcoat.2008.04.085

Google Scholar