Effects of Compression Tests on Point Defects in Pure Ni and Ni-16wt%Cr Model Alloys

Article Preview

Abstract:

On Ni and Ni-16wt%.Cr model-alloys compressed at 30 % and 60 % deformation, point-defects and dislocations concentrations are respectively characterized by positron annihilation spectroscopy and x-ray diffraction analysis. The positron results show that only mono-vacancies are formed during compressive test The X-ray results allows us to quantify the dislocation concentration in the systems. Saturation of defect densities is observed in measurements for these high deformation rates. In support to the experimental work, an homogeneous kinetic model is used to characterize point-defect – dislocation interactions to estimate the kinetics of vacancy restoration to equilibrium concentration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

202-209

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Saindrenan, R. Le Gall, F. Christien, Endommagement interfacial des métaux, Ed. Ellipses (2002).

Google Scholar

[2] D. J. Young, High temperature oxidation and corrosion of metals, Elsevier Corrosion Series, Vol. 1, (2008).

Google Scholar

[3] J. Philibert, Atom movements : diffusion and mass transport in solids, J. Philibert, les editions de physique, (1991).

Google Scholar

[4] S.J. Wang, H.J. Grabke, Z. Metallkde., 61, 597, (1970).

Google Scholar

[5] D. McLean, Grain boundaries in metals, Oxford university press, (1957).

Google Scholar

[6] T. E. Jackman, C. W. Schulte, J. L. Campbell, P. C. Lichtenberger, I. K. Mackenzie and M. R. Wormald , J. Phys. F: Met. Phys. 4 L1 (1974).

Google Scholar

[7] G. Dlubek, R. Krause, O. Brummer, Z. Michno and T. Gorecki , J. Phys. F : Met. Phys. 17, 1333 (1987).

DOI: 10.1088/0305-4608/17/6/008

Google Scholar

[8] W. Petry, M. Brüssler, V. Gröger, H. G. Müller, G. Vogl, Hyperfine Interactions , Vol. 15, 371 (1983).

Google Scholar

[9] R.N. West, R.M. Niemmen, M.J. Manninen and P. Hautojärvi, Positons in solids, topics in Current Physics vol. 12, Springer Verlag (1979).

Google Scholar

[10] A. Van Veen, C. Corbel and P.E. Nijnarends, Industrial applications of positron annihilation, J. de Physique IV, Colloque C1, Supplément au journal de Physique III, Vol. 5, Les Editions de Physique (1994).

Google Scholar

[11] M. Hakala, M.J. Puska and R.M. Nieminen, Phys. Rev. B 57, 7621 (1998).

Google Scholar

[12] I. Groma, Phys. Rev. B 57, 7535 (1998).

Google Scholar

[13] A. Borbely and I. Groma, Appl. Phys. Lett. 79, 1772-1774 (2001).

Google Scholar

[14] A. J. C. Wilson, Proc. Phys. Soc. 80, 286 (1962).

Google Scholar

[15] F.A. Nichols, J. of Nucl. Mat. 75, 32-41 (1978).

Google Scholar

[16] R. Sizmann, J. of Nucl. Mat. 69-70, 386-412 (1978).

Google Scholar

[17] Landolt-Börnstein database.

Google Scholar