Neutron Reflectometry for the Investigation of Self-Diffusion in Amorphous Silicon

Article Preview

Abstract:

We present experiments based on neutron reflectometry in combination with 29Si/natSi isotope multilayers in order to investigate the self-diffusion in amorphous silicon. Such experiments allow the detection of diffusion processes in the amorphous state on length scales below 10 nm. First results at 650 °C show a continuous decrease of the artificial Bragg peak produced by the multilayer, corresponding to a diffusivity of (1.1 ± 0.4) x 10-20 m2/s on a length scale of 2 - 7 nm. The diffusivity is not time-dependent for annealing times between 3 min and 1 h. Compared to recent measurements in silicon single crystals by the same method, the diffusivity is higher by a factor of about 105.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

225-230

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. J. Powell, The physics of amorphous-silicon thin-film transistors, IEEE Trans. Electron Devices. 36 (1989) 2753-2763.

DOI: 10.1109/16.40933

Google Scholar

[2] A. Shah, Photovoltaic Technology: The Case for Thin-Film Solar Cells, Science. 285 (1999) 692–698.

Google Scholar

[3] M. T. McDowell, S. W. Lee, W. D. Nix, Y. Cui, Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries, Adv. Mater. 25 (2013) 4966-4985.

DOI: 10.1002/adma.201301795

Google Scholar

[4] C. Spinella, S. Lombardo, F. Priolo, Crystal grain nucleation in amorphous silicon, J. Appl. Phys. 84 (1998) 5383-5414.

DOI: 10.1063/1.368873

Google Scholar

[5] H. Schmidt, M. Gupta, M. Bruns, Nitrogen Diffusion in Amorphous Silicon Nitride Isotope Multilayers Probed by Neutron Reflectometry, Phys. Rev. Lett. 96 (2006) 055901.

DOI: 10.1103/physrevlett.96.055901

Google Scholar

[6] H. Schmidt, W. Gruber, T. Gutberlet, M. Ay, J. Stahn, U. Geckle, M. Bruns, Structural relaxation and self-diffusion in covalent amorphous solids: Silicon nitride as a model system, J. Appl. Phys. 102 (2007) 043516.

DOI: 10.1063/1.2770821

Google Scholar

[7] S. Chakravarty, H. Schmidt, U. Tietze, D. Lott, N. P. Lalla, A. Gupta, Self-diffusion and defect annihilation in nanocrystalline Fe films probed by neutron reflectometry, Phys. Rev. B. 80 (2009) 014111.

DOI: 10.1103/physrevb.80.014111

Google Scholar

[8] H. Schmidt, M. Gupta, T. Gutberlet, J. Stahn, M. Bruns, How to measure atomic diffusion processes in the sub-nanometer range, Acta Mater. 56 (2008) 464-470.

DOI: 10.1016/j.actamat.2007.10.005

Google Scholar

[9] R. Kube, H. Bracht, E. Hüger, H. Schmidt, Contributions of vacancies and self-interstitials to self-diffusion in silicon under thermal equilibrium and nonequilibrium conditions, Phys. Rev. B. 88 (2013) 85206.

DOI: 10.1103/physrevb.88.085206

Google Scholar

[10] S. Mirabella, D. De Salvador, E. Bruno, E. Napolitani, E. F. Pecora, S. Boninelli, F. Priolo, Mechanism of Boron Diffusion in Amorphous Silicon, Phys. Rev. Lett. 100 (2008) 155901.

DOI: 10.1103/physrevlett.100.155901

Google Scholar

[11] G. T. Barkema, N. Mousseau, Identification of Relaxation and Diffusion Mechanisms in Amorphous Silicon, Phys. Rev. Lett. 81 (1998) 1865.

DOI: 10.1103/physrevlett.81.1865

Google Scholar