Crystallization and Reconstructive Layer Transformation of a-Si/Au Multilayer Thin Films under a Strong Gravitational Field

Article Preview

Abstract:

There were still unclear questions in the new method that fabricate the high quality poly crystalline Si thin film from amorphous Si thin film with lower annealing temperature than conventional Si recrystallization temperature. In that recrystallization process, the recrystallization mechanism was generally explained by the MIC (Metal Induced Crystallization) of Au. In this paper, we have discussed the effects of film structure and strong gravity on recrystallization, by using conventional furnace and high-temperature ultracentrifuge furnace system. The five kinds of samples (two bilayered Si/Au thin films, two multilayered Si/Au thin films and trilayered Si/Au/Si thin film) and found the effects of structure and strong gravity. The best for crystallization was Au/Si multilayered thin film, which is almost finished to crystallize even at 673 K annealing. The strong gravity advanced and retreated the crystallization, depending to thin film structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

156-163

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Sameshima, M. Hara, S. Usui, XeCl Excimer Laser Annealing Used to Fabricate Poly-Si TFT's, Jpn. J. Appl. Phys. 28 (1989) 1789-1793.

DOI: 10.1143/jjap.28.1789

Google Scholar

[2] Y. Kawazu, H. Kudo, S. Onari, T. Arai, Initial Stage of the Interfacial Reaction between Nickel and Hydrogenated Amorphous Silicon, Jpn. J. Appl. Phys. 29 (1990) 729–739.

DOI: 10.1143/jjap.29.729

Google Scholar

[3] G. Radnoczi, A. Robertsson, H.T.G. Hentzell, S.F. Gong, M.A. Hasam, Al induced crystallization of a‐Si, J. Appl. Phys. 69 (1991) 6394–6399.

DOI: 10.1063/1.348842

Google Scholar

[4] B. Bokhonov, M. Korchagin, In situ investigation of stage of the formation of eutectic alloys in Si-Au and Si-Al systems, J. Alloys Compd. 312 (2000) 238–250.

DOI: 10.1016/s0925-8388(00)01173-7

Google Scholar

[5] S.Y. Yoon, S.J. Park, K.H. Kim, J. Jang, Metal-induced crystallization of amorphous silicon, Thin Solid Films 383 (2001) 34-38.

DOI: 10.1016/s0040-6090(00)01790-9

Google Scholar

[6] Y. Nakazaki, G. Kawachi, M. Jyumonji, H. Ogawa, M. Hiramatsu, K. Azuma, T. Warabisako, M. Matsumura, Characterization of Novel Polycrystalline Silicon Thin-Film Transistors with Long and Narrow Grains, Jpn. J. Appl. Phys. 45 (2006) 1489-1494.

DOI: 10.1143/jjap.45.1489

Google Scholar

[7] F. Oki, Y. Ogata, Y. Fujiki, Effect of Deposited Metals on the Crystallization Temperature of Amorphous Germanium Film, Jpn. J. Appl. Phys. 8 (1969) 1056-1056.

DOI: 10.1143/jjap.8.1056

Google Scholar

[8] G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, M. A. Hasan, Al induced crystallization of a‐Si, J. Appl. Phys. 69 (1991) 6394- 6399.

DOI: 10.1063/1.348842

Google Scholar

[9] L. Pereira, H. Aguas, R. M. S. Martins, P. Vilarinho, E. Fortunato, R. Martins, Polycrystalline silicon obtained by metal induced crystallization using different metals, Thin Solid Films 451-452 (2004) 334-339.

DOI: 10.1016/j.tsf.2003.10.124

Google Scholar

[10] T. Aoki, H. Kanno, A. Kenjo, T. Sadoh, M. Miyao, Au-induced lateral crystallization of a-Si1-xGex (x: 0–1) at low temperature, Thin Solid Film 508 (2006) 44-47.

DOI: 10.1016/j.tsf.2005.07.317

Google Scholar

[11] T. Mashimo, Self-consistent approach to the diffusion induced by a centrifugal field in condensed matter: Sedimentation, Phys. Rev. A38 (1988) 4149-4154.

DOI: 10.1103/physreva.38.4149

Google Scholar

[12] T. Mashimo et al., Atomic-scale graded structure formed by sedimentation of substitutional atoms in a Bi–Sb alloy, J. Appl. Phys. 90 (2001) 741-744.

DOI: 10.1063/1.1381543

Google Scholar

[13] T. Mashimo, X. Huang, T. Osakabe, M. Ono, M. Nishihara, H. Ihara, M. Sueyoshi, K. Shibasaki, S. Shibasaki, N. Mori, Advanced high-temperature ultracentrifuge apparatus for mega-gravity materials science, Rev. Sci. Instr. 74 (2003) 160-163.

DOI: 10.1063/1.1527718

Google Scholar

[14] M. Ono, T. Kinoshita, H. Ueno, X. Huang, T. Osakabe, T. Mashimo, Sedimentation of Substitutional Solute Atomsin In-Pb System Alloy under Strong Gravitational Field: Experiments and Simulations, Mater. Trans. 46 (2005) 219 – 224.

DOI: 10.2320/matertrans.46.219

Google Scholar

[15] T. Mashimo, T. Ikeda, I. Minato, Atomic-scale graded structure formed by sedimentation of substitutional atoms in a Bi–Sb alloy, Appl. Phys. Lett. 90 (2007) 741-744.

DOI: 10.1063/1.1381543

Google Scholar

[16] R. Bagum, A. Yoshiasa, S. Okayasu, Y. Iguchi, M. Ono, M. Okube, T. Mashimo, Effect of strong gravity on Y1Ba2Cu3O7-x superconductor, J. Appl. Phys. 108 (2010) 053517.

DOI: 10.1063/1.3475519

Google Scholar

[17] H. Miyazaki, H. Takiguchi, M. Aono, Y. Okamoto, Influence of annealing temperature and Au concentration on the electrical properties of multilayered a-Ge/Au films, J. Non-Crystalline Solids 358 (2012) 2103-2106.

DOI: 10.1016/j.jnoncrysol.2012.01.064

Google Scholar

[18] M. Aono, M. Takahashi, H. Takiguchi, Y. Okamoto, N. Kitazawa, Y. Watanabe, Thermal annealing of a-Si/Au superlattice thin films, J. Non-Crystalline Solids 358 (2012) 2150-2153.

DOI: 10.1016/j.jnoncrysol.2011.12.088

Google Scholar

[19] Y. Okamoto, H. Takiguchi, Novel Power Factor of Si-Ge System, in: D. M. Rowe (Eds), THERMOELECTRICS AND ITS ENERGY HARVESTING MODULES, SYSTEMS, AND APLICATIONS IN THERMOELECTRICS, CRC Press Tayer & Francis Group, London, 2012, pp.13-22.

DOI: 10.1201/b11892-17

Google Scholar

[20] C. Droz, E.V. Sauvain, J. Feitknecht, J. Meier, A. Shaf, Relationship between Raman Crystallinity and Open Circuit Voltage in Microcrystalline Silicon Solar Cells, Solar Energy and Solar Cells 81 (2004) 61-71.

DOI: 10.1016/j.solmat.2003.07.004

Google Scholar

[21] H. Okuda, S. Katachi, K. Maeda, K. Nishioka, Crystallinity of μc-Si Films for Solar Application Studied by Raman Spectroscopy and X-ray Diffraction Methods, Memoirs of the Faculty of Engineering, Miyazaki University, 38 (2009) 103-107.

Google Scholar

[22] M. Konagai, T. Tsushima, M. -K. Kim, K. Asakusa, A. Yamada, Y. Kudriavtsev, A. Villegas, R. Asomoza, High-rate deposition of silicon thin-film solar cells by the hot-wire cell method, Thin Solid Films 395 (2001) 152–156.

DOI: 10.1016/s0040-6090(01)01244-5

Google Scholar

[23] T.B. Massalski, Binary Alloy Phase Diagrams, American Society for Metals, Ohio, 1987, pp.264-313.

Google Scholar