[1]
T. Sameshima, M. Hara, S. Usui, XeCl Excimer Laser Annealing Used to Fabricate Poly-Si TFT's, Jpn. J. Appl. Phys. 28 (1989) 1789-1793.
DOI: 10.1143/jjap.28.1789
Google Scholar
[2]
Y. Kawazu, H. Kudo, S. Onari, T. Arai, Initial Stage of the Interfacial Reaction between Nickel and Hydrogenated Amorphous Silicon, Jpn. J. Appl. Phys. 29 (1990) 729–739.
DOI: 10.1143/jjap.29.729
Google Scholar
[3]
G. Radnoczi, A. Robertsson, H.T.G. Hentzell, S.F. Gong, M.A. Hasam, Al induced crystallization of a‐Si, J. Appl. Phys. 69 (1991) 6394–6399.
DOI: 10.1063/1.348842
Google Scholar
[4]
B. Bokhonov, M. Korchagin, In situ investigation of stage of the formation of eutectic alloys in Si-Au and Si-Al systems, J. Alloys Compd. 312 (2000) 238–250.
DOI: 10.1016/s0925-8388(00)01173-7
Google Scholar
[5]
S.Y. Yoon, S.J. Park, K.H. Kim, J. Jang, Metal-induced crystallization of amorphous silicon, Thin Solid Films 383 (2001) 34-38.
DOI: 10.1016/s0040-6090(00)01790-9
Google Scholar
[6]
Y. Nakazaki, G. Kawachi, M. Jyumonji, H. Ogawa, M. Hiramatsu, K. Azuma, T. Warabisako, M. Matsumura, Characterization of Novel Polycrystalline Silicon Thin-Film Transistors with Long and Narrow Grains, Jpn. J. Appl. Phys. 45 (2006) 1489-1494.
DOI: 10.1143/jjap.45.1489
Google Scholar
[7]
F. Oki, Y. Ogata, Y. Fujiki, Effect of Deposited Metals on the Crystallization Temperature of Amorphous Germanium Film, Jpn. J. Appl. Phys. 8 (1969) 1056-1056.
DOI: 10.1143/jjap.8.1056
Google Scholar
[8]
G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, M. A. Hasan, Al induced crystallization of a‐Si, J. Appl. Phys. 69 (1991) 6394- 6399.
DOI: 10.1063/1.348842
Google Scholar
[9]
L. Pereira, H. Aguas, R. M. S. Martins, P. Vilarinho, E. Fortunato, R. Martins, Polycrystalline silicon obtained by metal induced crystallization using different metals, Thin Solid Films 451-452 (2004) 334-339.
DOI: 10.1016/j.tsf.2003.10.124
Google Scholar
[10]
T. Aoki, H. Kanno, A. Kenjo, T. Sadoh, M. Miyao, Au-induced lateral crystallization of a-Si1-xGex (x: 0–1) at low temperature, Thin Solid Film 508 (2006) 44-47.
DOI: 10.1016/j.tsf.2005.07.317
Google Scholar
[11]
T. Mashimo, Self-consistent approach to the diffusion induced by a centrifugal field in condensed matter: Sedimentation, Phys. Rev. A38 (1988) 4149-4154.
DOI: 10.1103/physreva.38.4149
Google Scholar
[12]
T. Mashimo et al., Atomic-scale graded structure formed by sedimentation of substitutional atoms in a Bi–Sb alloy, J. Appl. Phys. 90 (2001) 741-744.
DOI: 10.1063/1.1381543
Google Scholar
[13]
T. Mashimo, X. Huang, T. Osakabe, M. Ono, M. Nishihara, H. Ihara, M. Sueyoshi, K. Shibasaki, S. Shibasaki, N. Mori, Advanced high-temperature ultracentrifuge apparatus for mega-gravity materials science, Rev. Sci. Instr. 74 (2003) 160-163.
DOI: 10.1063/1.1527718
Google Scholar
[14]
M. Ono, T. Kinoshita, H. Ueno, X. Huang, T. Osakabe, T. Mashimo, Sedimentation of Substitutional Solute Atomsin In-Pb System Alloy under Strong Gravitational Field: Experiments and Simulations, Mater. Trans. 46 (2005) 219 – 224.
DOI: 10.2320/matertrans.46.219
Google Scholar
[15]
T. Mashimo, T. Ikeda, I. Minato, Atomic-scale graded structure formed by sedimentation of substitutional atoms in a Bi–Sb alloy, Appl. Phys. Lett. 90 (2007) 741-744.
DOI: 10.1063/1.1381543
Google Scholar
[16]
R. Bagum, A. Yoshiasa, S. Okayasu, Y. Iguchi, M. Ono, M. Okube, T. Mashimo, Effect of strong gravity on Y1Ba2Cu3O7-x superconductor, J. Appl. Phys. 108 (2010) 053517.
DOI: 10.1063/1.3475519
Google Scholar
[17]
H. Miyazaki, H. Takiguchi, M. Aono, Y. Okamoto, Influence of annealing temperature and Au concentration on the electrical properties of multilayered a-Ge/Au films, J. Non-Crystalline Solids 358 (2012) 2103-2106.
DOI: 10.1016/j.jnoncrysol.2012.01.064
Google Scholar
[18]
M. Aono, M. Takahashi, H. Takiguchi, Y. Okamoto, N. Kitazawa, Y. Watanabe, Thermal annealing of a-Si/Au superlattice thin films, J. Non-Crystalline Solids 358 (2012) 2150-2153.
DOI: 10.1016/j.jnoncrysol.2011.12.088
Google Scholar
[19]
Y. Okamoto, H. Takiguchi, Novel Power Factor of Si-Ge System, in: D. M. Rowe (Eds), THERMOELECTRICS AND ITS ENERGY HARVESTING MODULES, SYSTEMS, AND APLICATIONS IN THERMOELECTRICS, CRC Press Tayer & Francis Group, London, 2012, pp.13-22.
DOI: 10.1201/b11892-17
Google Scholar
[20]
C. Droz, E.V. Sauvain, J. Feitknecht, J. Meier, A. Shaf, Relationship between Raman Crystallinity and Open Circuit Voltage in Microcrystalline Silicon Solar Cells, Solar Energy and Solar Cells 81 (2004) 61-71.
DOI: 10.1016/j.solmat.2003.07.004
Google Scholar
[21]
H. Okuda, S. Katachi, K. Maeda, K. Nishioka, Crystallinity of μc-Si Films for Solar Application Studied by Raman Spectroscopy and X-ray Diffraction Methods, Memoirs of the Faculty of Engineering, Miyazaki University, 38 (2009) 103-107.
Google Scholar
[22]
M. Konagai, T. Tsushima, M. -K. Kim, K. Asakusa, A. Yamada, Y. Kudriavtsev, A. Villegas, R. Asomoza, High-rate deposition of silicon thin-film solar cells by the hot-wire cell method, Thin Solid Films 395 (2001) 152–156.
DOI: 10.1016/s0040-6090(01)01244-5
Google Scholar
[23]
T.B. Massalski, Binary Alloy Phase Diagrams, American Society for Metals, Ohio, 1987, pp.264-313.
Google Scholar