Electrochemistry of Symmetrical Ion Channel: Three-Dimensional Nernst-Planck-Poisson Model

Article Preview

Abstract:

The paper provides a physical description of ionic transport through the rigid symmetrical channel. A three-dimensional mathematical model, in which the ionic transport is treated as the electrodiffusion of ions, is presented. The model bases on the solution of the 3D Nernst-Planck-Poisson system for cylindrical geometry. The total flux includes drift (convection) and diffusion terms. It allows simulating the transport characteristics at the steady-state and time evolution of the system. The numerical solutions of the coupled differential diffusion equation system are obtained by finite element method. Examples are presented in which the flow characteristics at the stationary state and during time evolution are compared. It is shown that the stationary state is achieved after about 2×10 -8 s since the process beginning. Various initial conditions (channel charging and dimensions) are considered as the key parameters controlling the selectivity of the channel. The model allows determining the flow characteristic, calculating the local concentration and potential across the channel. The model can be extended to simulate transport in polymer membranes and nanopores which might be useful in designing biosensors and nanodevices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

68-78

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Cooper, E. Jakobsson, P. Wolynes, The theory of ion transport through membrane channels. Prog. Biophys Molec. Biol. 46 (1985) 51-96.

DOI: 10.1016/0079-6107(85)90012-4

Google Scholar

[2] B. Corry, S. Kuyucak, S-H. Chung, Dielectric self-energy Poisson – Boltzmann and Poisson-Nernst-Plack models of ion channels. Biophys. J. 84 (2003) 3594-3606.

DOI: 10.1016/s0006-3495(03)75091-7

Google Scholar

[3] B. Corry, S. Kuyucak, S-H. Chung, Test of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus Brownian dynamics. Biophys. J. 78 (2000) 2364-2381.

DOI: 10.1016/s0006-3495(00)76781-6

Google Scholar

[4] C. Adcock, G.R. Smith, M.S.P. Sansom, Electrostatitics and the ion selectivity of ligand-gated channels. Biophys. J. 75 (1998) 1211-1222.

DOI: 10.1016/s0006-3495(98)74040-8

Google Scholar

[5] W. Cheng, C.X. Wang, W.Z. Chen, Y. W. Xu, Y.Y. Shi, Investigating the dielectric effects of channel pore water on the electrostatic barriers of the permeation ion by the finite difference Poisson-Boltzmann method. Eur. Biophys. J. 27 (1998).

DOI: 10.1007/s002490050116

Google Scholar

[6] P. Jordan, R.J. Bacquet, J.A. McCammon, P. Tran, How electrolyte shielding influences the electrical potential in transmembrane ion channels, Biophys. J. 55 (1989) 1041-1052.

DOI: 10.1016/s0006-3495(89)82903-0

Google Scholar

[7] D.G. Levitt, Strong electrolyte continuum theory solution for equilibrium profiles, diffusion limitation, and conductance in charged ion channels. Biophys. J. 48 (1985) 19-31.

DOI: 10.1016/s0006-3495(85)83757-7

Google Scholar

[8] P. Weetman, S. Goldman, C.G. Gray, Use of Poisson-Boltzmann equation to estimate the electrostatic free energy barrier for dielectric models of biological ion channels. J. Phys. Chem. 101 (1997) 6073-6078.

DOI: 10.1021/jp971162t

Google Scholar

[9] R.S. Eisenberg, From structure to function in open ionic channel, J. Membr. Biol. 171 (1999) 1-24.

Google Scholar

[10] M.G. Kurnikova, R.D. Coalson, P. Graf, A. Nitzan, A lattice relaxation algorithm for three-dimensional Poisson-nernst-Planck theory with application to ion transport through the Gramicidin A channel, Biophys. J. 76 (1999) 642-656.

DOI: 10.1016/s0006-3495(99)77232-2

Google Scholar

[11] W. Nonner, L. Catacuzzeno, B. Eisenberg, Binding and selectivity in L-type calcium channels: a mean spherical approximation. Biophys. J. 79 (2000) 1976-(1992).

DOI: 10.1016/s0006-3495(00)76446-0

Google Scholar

[12] Valent, P. Petrovic, P. Neogrady, I. Schreiber, M. Marek, Electrodiffusion kinetics of ionic transport in a simple membrane channel, J. Phys. Chem. 117 (2013) 14283-14293.

DOI: 10.1021/jp407492q

Google Scholar

[13] B. Roux, T. Allen, S. Berneche, W. Im, Theoretical and computational models of biological ion channels, Q. Rev. Biophys. 37 (2004) 15-103.

DOI: 10.1017/s0033583504003968

Google Scholar

[14] B. Roux, The membrane potential and its representation by a constant electric field in computer simulations, Biophys. J. 95 (2008) 4205-4216.

DOI: 10.1529/biophysj.108.136499

Google Scholar

[15] C. Kutzner, H. Grubmuller, B.L. de Groot, U. Zachariae, Computational electrophysiology: The molecular dynamics of ion channel permeation and selectivity in atomistic detail, Biphys. J. 101 (2011) 809-817.

DOI: 10.1016/j.bpj.2011.06.010

Google Scholar

[16] M. Jensen, W. Borhani, K. Lindorff-Larsen, P. Maragakis, V. Jogini, M. P. Eastwood, R. O. Dror, D.E. Shaw, Principles of conduction and hydrophobic gating in K+ channels, Proc. Natl. Acad. Sci. USA 107 (2010) 5833-5838.

DOI: 10.1073/pnas.0911691107

Google Scholar

[17] D. P. Tieleman, H. Leontiadou, A.E. Mark, S.J. Marrink, Simulation of pore formation in lipid bilayers by mechanical stress and electric fields, J. Am. Chem. Soc. 125 (2003) 6382-6383.

DOI: 10.1021/ja029504i

Google Scholar

[18] V. Barcilon, D.P. Chen, R.S. Eisenberg, Ion flow through narrow membrane channels, J. Appl. Math. 52 (1992) 1405-1425.

DOI: 10.1137/0152081

Google Scholar

[19] D.P. Chen, V. Barcilon, R.S. Eisenberg, Constant fields and constant gradients in open ionic channels, Biophys. J. 61 (1992) 1372-1393.

DOI: 10.1016/s0006-3495(92)81944-6

Google Scholar

[20] D. P. Chen, R. S. Eisenberg, Charges, currents and potentials in ionic channels of one confor-mation, Biophys. J. 64 (1993) 1405-1421.

DOI: 10.1016/s0006-3495(93)81507-8

Google Scholar

[21] D.P. Chen, J. Lear, R.S. Eisenberg, Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic channel, Biophys. J. 72 (1997) 97-116.

DOI: 10.1016/s0006-3495(97)78650-8

Google Scholar

[22] D. A. Morton-Blake, Molecular Dynamics of the Transport of Ions in a Synthetic Channel, Diff. Found., 1, 77 (2014).

Google Scholar