Cobalt Doping as the Controlling Factor of Oxygen Diffusivity in ZnO by More than Four Orders of Magnitude

Article Preview

Abstract:

Oxygen diffusivity in ZnO ceramics doped with cobalt was investigated using an isotope tracer method. The oxygen isotope (18O) was introduced by 18O/16O exchange annealing in an 18O2 atmosphere, and the depth profile of the 18O concentration was analyzed by secondary ion mass spectrometry. The results show that oxygen diffusivity in ZnO steeply increases with increasing Co concentration. In fact, the bulk oxygen diffusivity in 15 mol% Co-doped ZnO was four orders of magnitude greater than that of nominally non-doped ZnO. Oxygen diffusivity at grain boundaries was also enhanced by Co-doping.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-90

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. R. Clarke, J. Am. Ceram. Soc., 82 (1999) p.485.

Google Scholar

[2] M. Matsuoka, Jpn. J. Appl. Phys., 10 (1971) p.736.

Google Scholar

[3] B. Sang, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys., 37, (1998) p. L206.

Google Scholar

[4] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J.P. Li, and C. L. Lin, Appl. Phys. Lett. 84 (2004) p.3654.

Google Scholar

[5] N. Ohashi, Y. Terada, T. Ohgaki, T. Tsurumi, O. Fukunaga, H. Haneda, and J. Tanaka, J. Korean Phys. Soc., 35 (1999) p.213.

Google Scholar

[6] N. Ohashi, Y. Terada, T. Ohgaki, S. Tanaka, T. Tsurumi, O. Fukunaga, H. Haneda and, J. Tanaka, Jpn. J. Appl. Phys., 38 (1999) p.5028.

DOI: 10.1143/jjap.38.5028

Google Scholar

[7] P. Koidl, Phys. Rev., B 15 (1977) p.2493.

Google Scholar

[8] N. Ohashi, T. Sekiguchi, H. Haneda, Y. Terada, T. Ohgaki, T. Tsurumi, J. Tanaka, and O. Fukunaga, Key Eng. Mater., 157–158 (1999) p.227.

DOI: 10.4028/www.scientific.net/kem.157-158.227

Google Scholar

[9] L. Wei, Z. Li, and W. F. Zhang, Appl. Surf. Sci., 255 (2009) p.4992.

Google Scholar

[10] G. W. Tomlins, J. L. Routbort, and T. O. Mason, J. Appl. Phys. 87 (2000) p.117.

Google Scholar

[11] M. A. N. Nogueira, W. B. Ferraz, and A. C. S. Sabioni, Mater. Res., 6 (2003) p.167.

Google Scholar

[12] G. W. Tomlins, J. L. Routbort, and T. O. Mason, J. Am. Ceram. Soc., 81 (1998) p.869.

Google Scholar

[13] A. C. S. Sabioni, Solid State Ionics, 170 (2004) p.145.

Google Scholar

[14] H. Haneda, I. Sakaguchi, A. Watanabe, T. Ishigaki, and J. Tanaka, J. Electroceram., 4 (1999) p.41.

Google Scholar

[15] I. Sakaguchi, K. Matsumoto, T. Ohgaki, Y. Adachi, K. Watanabe, N. Ohashi, H. Haneda, J. Ceram. Soc. Jpn., 118 (2010) p.362.

DOI: 10.2109/jcersj2.118.362

Google Scholar

[16] I. Sakaguchi, K. Watanabe, Y. Adachi, T. Ohgaki, S. Hishita, N. Ohashi, and H. Haneda, Jpn. J. Appl. Phys., 50 (2011) pp.125501-1.

DOI: 10.7567/jjap.50.125501

Google Scholar

[17] W.J. King, and A.C.C. Tseung, Electrochim. Acta., 19 (1974) p.485.

Google Scholar

[18] H. Ryoken, I. Sakaguchi, N. Ohashi, Y. Adachi, T. Ohgaki, S. Hishita, and H. Haneda, Key Eng. Mater., 320 (2006) p.103.

DOI: 10.4028/www.scientific.net/kem.320.103

Google Scholar

[19] P. Shewmon, Diffusion in Solids, 2nd ed., Mineral, Metals, and Materials Society, Warrendale, PA, (1989) p.9.

Google Scholar

[20] T. I. Kucher, Sov. Phys. Solid State (Engl. Transl. ), 3 (1961) p.401.

Google Scholar

[21] A.D. Le Claire, Br. J. Appl. Phys., 14 (1963) p.351.

Google Scholar

[22] M. Hashiguchi, I. Sakaguchi, and N. Ohashi, in this meeting, (2014) A181.

Google Scholar

[23] A. Janotti and, C. G. van de Walle, Phys. Rev., B 76 (2007) pp.165202-1.

Google Scholar