Cobalt Doping as the Controlling Factor of Oxygen Diffusivity in ZnO by More than Four Orders of Magnitude

Abstract:

Article Preview

Oxygen diffusivity in ZnO ceramics doped with cobalt was investigated using an isotope tracer method. The oxygen isotope (18O) was introduced by 18O/16O exchange annealing in an 18O2 atmosphere, and the depth profile of the 18O concentration was analyzed by secondary ion mass spectrometry. The results show that oxygen diffusivity in ZnO steeply increases with increasing Co concentration. In fact, the bulk oxygen diffusivity in 15 mol% Co-doped ZnO was four orders of magnitude greater than that of nominally non-doped ZnO. Oxygen diffusivity at grain boundaries was also enhanced by Co-doping.

Info:

Periodical:

Edited by:

S.V. Divinski, H. Bracht and N.A. Stolwijk

Pages:

85-90

DOI:

10.4028/www.scientific.net/DDF.363.85

Citation:

M. Hashiguchi et al., "Cobalt Doping as the Controlling Factor of Oxygen Diffusivity in ZnO by More than Four Orders of Magnitude", Defect and Diffusion Forum, Vol. 363, pp. 85-90, 2015

Online since:

May 2015

Export:

Price:

$38.00

* - Corresponding Author

[1] D. R. Clarke, J. Am. Ceram. Soc., 82 (1999) p.485.

[2] M. Matsuoka, Jpn. J. Appl. Phys., 10 (1971) p.736.

[3] B. Sang, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys., 37, (1998) p. L206.

[4] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J.P. Li, and C. L. Lin, Appl. Phys. Lett. 84 (2004) p.3654.

[5] N. Ohashi, Y. Terada, T. Ohgaki, T. Tsurumi, O. Fukunaga, H. Haneda, and J. Tanaka, J. Korean Phys. Soc., 35 (1999) p.213.

[6] N. Ohashi, Y. Terada, T. Ohgaki, S. Tanaka, T. Tsurumi, O. Fukunaga, H. Haneda and, J. Tanaka, Jpn. J. Appl. Phys., 38 (1999) p.5028.

DOI: 10.1143/jjap.38.5028

[7] P. Koidl, Phys. Rev., B 15 (1977) p.2493.

[8] N. Ohashi, T. Sekiguchi, H. Haneda, Y. Terada, T. Ohgaki, T. Tsurumi, J. Tanaka, and O. Fukunaga, Key Eng. Mater., 157–158 (1999) p.227.

DOI: 10.4028/www.scientific.net/kem.157-158.227

[9] L. Wei, Z. Li, and W. F. Zhang, Appl. Surf. Sci., 255 (2009) p.4992.

[10] G. W. Tomlins, J. L. Routbort, and T. O. Mason, J. Appl. Phys. 87 (2000) p.117.

[11] M. A. N. Nogueira, W. B. Ferraz, and A. C. S. Sabioni, Mater. Res., 6 (2003) p.167.

[12] G. W. Tomlins, J. L. Routbort, and T. O. Mason, J. Am. Ceram. Soc., 81 (1998) p.869.

[13] A. C. S. Sabioni, Solid State Ionics, 170 (2004) p.145.

[14] H. Haneda, I. Sakaguchi, A. Watanabe, T. Ishigaki, and J. Tanaka, J. Electroceram., 4 (1999) p.41.

[15] I. Sakaguchi, K. Matsumoto, T. Ohgaki, Y. Adachi, K. Watanabe, N. Ohashi, H. Haneda, J. Ceram. Soc. Jpn., 118 (2010) p.362.

[16] I. Sakaguchi, K. Watanabe, Y. Adachi, T. Ohgaki, S. Hishita, N. Ohashi, and H. Haneda, Jpn. J. Appl. Phys., 50 (2011) pp.125501-1.

[17] W.J. King, and A.C.C. Tseung, Electrochim. Acta., 19 (1974) p.485.

[18] H. Ryoken, I. Sakaguchi, N. Ohashi, Y. Adachi, T. Ohgaki, S. Hishita, and H. Haneda, Key Eng. Mater., 320 (2006) p.103.

DOI: 10.4028/www.scientific.net/kem.320.103

[19] P. Shewmon, Diffusion in Solids, 2nd ed., Mineral, Metals, and Materials Society, Warrendale, PA, (1989) p.9.

[20] T. I. Kucher, Sov. Phys. Solid State (Engl. Transl. ), 3 (1961) p.401.

[21] A.D. Le Claire, Br. J. Appl. Phys., 14 (1963) p.351.

[22] M. Hashiguchi, I. Sakaguchi, and N. Ohashi, in this meeting, (2014) A181.

[23] A. Janotti and, C. G. van de Walle, Phys. Rev., B 76 (2007) pp.165202-1.

In order to see related information, you need to Login.