[1]
Belzoni, L., Ruiz-Navas, E.M., Gordo, E. Flexural properties, thermal conductivity and electrical resistivity of prealloyed and master alloy addistion powder metallurgy Ti-6Al-4V., Materials & Design. Volume 52. Pages 888-895. (2013).
DOI: 10.1016/j.matdes.2013.06.036
Google Scholar
[2]
Shimabukuro, T. Daouk, R., Skupnjak, J., Nordman, M., Burrell, M., Sutanto, L., Abad, A., Garmestani, H., Ula, N., Foyos, J., Almahmoud, K., Almahmoud, O., and Es-Said, O. S. The Effect of Processing Method on the Microstructure and Mechanical Behavior of Ti-6Al-4V Plate Produced by Powder Metallurgy Technique, submitted to the Defect and Diffusion Forum Journal, (2015).
DOI: 10.4028/www.scientific.net/ddf.367.175
Google Scholar
[3]
Wang, H., Fang, Z. Z., Sun, P. A Critical Review of Mechanical Properties of Powder Metallurgy Titanium., International Journal of Powder Metallurgy. Vol. 46, Issue 5. Pages 45 – 57. (2010).
Google Scholar
[4]
Bolzoni, L., Ruiz-Navas, E.M., and Gordo, E. Processing of Elemental Titanium by Powder Metallurgy Techniques., Trans Tech Publications. Switzerland, (2013).
DOI: 10.4028/www.scientific.net/msf.765.383
Google Scholar
[5]
McCracken, C. G., D. P. Barbis, and R. C. Deeter. Key Characteristics Of Hydride-Dehydride Titanium Powder., Powder Metallurgy 54. 3 (2011): 180-183. Academic Search Complete. Web. 24 Feb. (2015).
DOI: 10.1179/174329011x13045076771849
Google Scholar
[6]
Wojtaszek, M., Sleboda, T. Thermomechanical Processing of P/M Ti-6Al-4V (14Alloy. (2013).
Google Scholar
[7]
Sobiyi, K. K. Machining of Powder Metal Titanium. 2011 (Master of Science thesis).
Google Scholar
[8]
Neikov, O. D., Murashova, I. B., Yefimov N. A., Naboychenko S. Handbook of Non-Ferrous Metal Powders: Technologies and Applications. Elsevier. (2009).
DOI: 10.1016/b978-0-08-100543-9.00023-3
Google Scholar
[9]
Vasconcellos, L. M. R., Carvalho, Y. R., Prado, R. F., Vasconcellos, L. G. O., Graca, M. L. A., and Cairo, C. A. A. Biomedical Engineering – Technical Applications in Medicine, First Edition, Croatia: InTech, (2012).
Google Scholar
[10]
Vuuren, D. S., Oosthuizen, S. J., and Heydenrych, M. D. Titanium Production via Metallothermic Reduction of TiCl4 in Molten Salt: Problems and Products. The Journal of the Southern African Institute of Mining and Metllurgy. (2011).
Google Scholar
[11]
ASTM F1472-14, Standard Specification for Wrought Titanium-6Aluminum-4Vanadium Alloy for Surgical Implant Applications (UNS R56400), ASTM International, West Conshohocken, PA, 2014, www. astm. org.
DOI: 10.1520/f1472-02
Google Scholar
[12]
ASTM F1108-14, Standard Specification for Titanium-6Aluminum-4Vanadium Alloy Castings for Surgical Implants (UNS R56406), ASTM International, West Conshohocken, PA, 2014, www. astm. org.
DOI: 10.1520/f1108-97
Google Scholar
[13]
ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, 1: 512, (1993).
Google Scholar