The Effect of Differences in the Diffusion Coefficients of Components on the Onset of Convection in Isothermal Multicomponent Systems

Article Preview

Abstract:

Two series of experiments on the formation of convective flows in multicomponent liquid and gaseous mixtures are considered. In the first series, the convective structures arising during the diffusion of a binary aqueous solution of salt and sugar in an aqueous solution of pure salt were studied using the schlieren method. The observed behavior of convective cells corresponds to the instability similar to the "finger structures". In the second series, the experiments were conducted to determine the effective diffusion coefficients as a function of pressure in gas mixtures 0.5504 CH4 + 0.4496 Ar – N2 and 0.5994 H2 + 0.4006 Ar – N2. Our experiments have shown that the onset of convective flows both in liquid and gaseous multicomponent mixtures is due to the difference in the interdiffusion coefficients of the components. The experimental data for the ternary gas mixtures are described in the framework of the linear theory of stability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

96-102

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.Z. Gershuni and E.M. Zhukhovitskii: Convective Stability of Incompressible Fluids (Keter, Jerusalem 1976).

Google Scholar

[2] A.G. Shashkov and T.N. Abramenko: Cross Effects in Gas Mixtures (Nauka i Tekhnika, Minsk 1976). (in Russian).

Google Scholar

[3] T.N. Abramenko, A.F. Zolotukhina and E.A. Shashkov: Thermal Diffusion in gases (Nauka i Tekhnika, Minsk 1982). (in Russian).

Google Scholar

[4] D. Joseph: Stability of Fluid Motions (Wiley, New York 1981).

Google Scholar

[5] D. Villers and J.K. Platten: J. Nonequilib. Thermodyn. Vol. 9 (1984), p.131.

Google Scholar

[6] Double-diffusive Convection, edited by A. Brandt and H.J.S. Fernando/ American Geophysical Union, Washington, USA (1995).

Google Scholar

[7] J.S. Turner: Buoyancy Effects in Fluids (Cambridge University Press, UK 1979).

Google Scholar

[8] S. Chen, J. Tӧlke and M. Krafczyk: Int. J. Heat and Mass Flow Vol. 31 (2010), p.217.

Google Scholar

[9] N.V. Gnevanov and B.L. Smorodin: J. Appl. Mech. and Tech. Phys Vol. 47 (2) (2006), p.214.

Google Scholar

[10] H.E. Huppert and J.S. Terner: J. Fluid Mech. Vol. 106 (1981), p.299.

Google Scholar

[11] R.C. Paliwal and C.F. Chen: J. Fluid Mech. Vol. 98 (1980 a, b), p.775, 769.

Google Scholar

[12] K. Kӧtter, M. Schmick and M. Markus: Nonlin. Phenom. in Complex Systems Vol. 4 (4) (2001), p.322.

Google Scholar

[13] S. Chandrasekhar: Hydrodymanic and hydromagnetic stability (Claredon Press, Oxford 1961).

Google Scholar

[14] R.S. Schechter, M.G. Velarde and J.K. Platten: Adv. Chem. Phys. Vol. 26 (1974), p.265.

Google Scholar

[15] E. Crespo and M.G. Velarde: Int. J. Heat Mass Transfer Vol. 25 (1982), p.1451.

Google Scholar

[16] D.T.G. Hurle and E. Jakeman: Phys. Letters Vol. 43 A (1973), p.127.

Google Scholar

[17] D. Henry and B. Roux: J. Fluid Mech. Vol. 195 (1988), p.175.

Google Scholar

[18] S. Rosenblat: J. Fluid Mech. Vol. 122 (1982), p.395.

Google Scholar

[19] Yu.I. Zhavrin, N.D. Kossov, S.M. Belov and S.B. Tarasov: Zhurnal Tekh. Fiz. Vol. 54 (5) (1984), p.943.

Google Scholar

[20] L. Miller and E.A. Mason: Phys. Fluids Vol. 9 (4) (1966), p.711.

Google Scholar

[21] W. Merzkirch: Approaches in Flow Visualization. Trends in Optical Non-Destructive Testing and Inspection (Elsevier, Amsterdam 2000).

DOI: 10.1016/b978-008043020-1/50038-7

Google Scholar

[22] S. Bretschneider: Properties of Gases and Liquids (Khimiya, Moscow 1966). (in Russian).

Google Scholar

[23] R. Haase: Thermodynamik der irreversiblen Prozesse (Steinkopff, Darmstadt 1963; Mir, Moscow 1967).

Google Scholar

[24] R. B . Bird, W.E. Stewart and E.N. Lightfoot: Transport Phenomena (New York: John Wiley & Sons, Inc. 2002).

Google Scholar

[25] P. Dunlop and C.M. Bignell: J. Chem. Phys. Vol. 86 (1987), p.2922.

Google Scholar

[26] Yu.I. Zhavrin, A.Z. Aitkozhaev, V.N. Kosov and S.A. Krasikov: Tech. Phys. Lett. Vol. 21 (3) (1995), p.206.

Google Scholar

[27] V.N. Kosov, V.D. Seleznev and Yu.I. Zhavrin: Tech. Phys. Vol. 42 (10) (1997), p.1236.

Google Scholar

[28] R. Taylor and R. Krishna: Multicomponent mass transfer (John Wiley & Sons, Inc., New York 1993).

Google Scholar

[29] V.D. Seleznev and V.G. Smirnov: Zhurnal Tekh. Fiz. Vol. 51 (4) (1981), p.975.

Google Scholar

[30] V.N. Kosov, O.V. Fedorenko and Yu.I. Zhavrin: Tech Phys. Vol. 59 (2014), p.482.

Google Scholar