[1]
I. Gibson, D.W. Rosen, B. Stucker, Additive Manufacturing Technologies. Springer-Verlag US, (2010).
Google Scholar
[2]
G.N. Levy, The role and future of the Laser Technology in the Additive Manufacturing environment. Physics Procedia 5, Part A (2010) 65-80.
Google Scholar
[3]
L. Hitzler, C. Janousch, J. Schanz, M. Merkel, B. Heine, F. Mack, W. Hall, A. Öchsner, Direction and location dependency of selective laser melted AlSi10Mg specimens. J Mater Process Technol 242 (2017) 48-61.
DOI: 10.1016/j.jmatprotec.2016.11.029
Google Scholar
[4]
L. Hitzler, J. Hirsch, J. Schanz, B. Heine, M. Merkel, W. Hall, A. Öchsner, Fracture toughness of selective laser melted AlSi10Mg. P I Mech Eng L: J Mat IN PRESS (2017).
DOI: 10.1177/1464420716687337
Google Scholar
[5]
L. Hitzler, C. Janousch, J. Schanz, M. Merkel, F. Mack, A. Öchsner, Non-destructive evaluation of AlSi10Mg prismatic samples generated by Selective Laser Melting: Influence of manufacturing conditions. Mat-wiss u Werkstofftech 47 (2016) 564-581.
DOI: 10.1002/mawe.201600532
Google Scholar
[6]
L. Hitzler, J. Hirsch, M. Merkel, W. Hall, A. Öchsner, Position dependent surface quality in Selective Laser Melting. Mat-wiss u Werkstofftech IN PRESS (2017).
DOI: 10.1002/mawe.201600742
Google Scholar
[7]
J.P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann Manuf Techn 56 (2007) 730-759.
DOI: 10.1016/j.cirp.2007.10.004
Google Scholar
[8]
K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, J.P. Kruth, Process optimization and microstructural analysis for selective laser melting of AlSi10Mg.
Google Scholar
[9]
D. Buchbinder, W. Meiners, E. Brandl, F. Palm, K. Müller-Lohmeier, M. Wolter, C. Over, W. Moll, J. Weber, N. Skrynecki, J. Grad, V. Neubert (2010).
Google Scholar
[10]
D. Buchbinder, W. Meiners, K. Wissenbach, R. Poprawe, Selective laser melting of aluminum die-cast alloy—Correlations between process parameters, solidification conditions, and resulting mechanical properties. J Laser Appl 27 (2015) S29205.
DOI: 10.2351/1.4906389
Google Scholar
[11]
N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit Manuf 1-4 (2014) 77-86.
DOI: 10.1016/j.addma.2014.08.001
Google Scholar
[12]
K. Kempen, L. Thijs, J. Van Humbeeck, J.P. Kruth, Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting. Physics Procedia 39 (2012) 439-446.
DOI: 10.1016/j.phpro.2012.10.059
Google Scholar
[13]
B. Heine, Werkstoffprüfung - Ermittlung von Werkstoffeigenschaften, 2 edn. Carl Hanser Verlag, (2011).
Google Scholar
[14]
A. Öchsner, Continuum Damage and Fracture Mechanics. Springer, Singapur, (2016).
Google Scholar
[15]
J. Schanz, M. Hofele, L. Hitzler, M. Merkel, H. Riegel Laser polishing of additive manufactured AlSi10Mg parts with an oscillating laser beam. In: Machining, Joining and Modifications of Advanced Materials. Springer, Singapore, 2016, pp.159-169.
DOI: 10.1007/978-981-10-1082-8_16
Google Scholar
[16]
J. Schanz, M. Hofele, S. Ruck, T. Schubert, L. Hitzler, G. Schneider, M. Merkel, H. Riegel, Metallurgical Investigations of Laser Remelted Additively Manufactured AlSi10Mg Parts. Mat-wiss u Werkstofftech IN PRESS (2017).
DOI: 10.1002/mawe.201700039
Google Scholar