[1]
S. Iijima. Helical microtubules of graphitic carbon,. Nature 354. 6348 (1991), pp.56-58.
DOI: 10.1038/354056a0
Google Scholar
[2]
A. Jorio, G. Dresselhaus, and M. S. Dresselhaus. Carbon nanotubes: Advanced topics in the synthesis, structure, properties and applications. Vol. 111. Topics in applied physics, 0303- 4216. Berlin: Springer-Verlag, (2008).
DOI: 10.1007/978-3-540-72865-8
Google Scholar
[3]
R. H. Baughman, A. A. Zakhidov, and W. A. de Heer. Carbon nanotubes-the route toward applications,. Science (New York, N.Y. ) 297. 5582 (2002), pp.787-792.
DOI: 10.1126/science.1060928
Google Scholar
[4]
S. Berber, Y. -K. Kwon, and D. Tománek. Unusually High Thermal Conductivity of Carbon Nanotubes,. Phys. Rev. Lett. 84. 20 (2000), pp.4613-4616.
DOI: 10.1103/physrevlett.84.4613
Google Scholar
[5]
Z. Han and A. Fina. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review,. Progress in Polymer Science 36. 7 (2011), pp.914-944.
DOI: 10.1016/j.progpolymsci.2010.11.004
Google Scholar
[6]
R. S. Ruoff and D. C. Lorents. Mechanical and thermal properties of carbon nanotubes,. Carbon 33. 7 (1995), pp.925-930.
DOI: 10.1016/0008-6223(95)00021-5
Google Scholar
[7]
E. T. Thostenson, Z. Ren, and T. -W. Chou. Advances in the science and technology of carbon nanotubes and their composites: A review,. Composites Science and Technology 61. 13 (2001), p.1899-(1912).
DOI: 10.1016/s0266-3538(01)00094-x
Google Scholar
[8]
H. R. Lusti and A. A. Gusev. Finite element predictions for the thermoelastic properties of nanotube reinforced polymers,. Modelling and Simulation in Materials Science and Engineering 12. 3 (2004), S107-S119.
DOI: 10.1088/0965-0393/12/3/s05
Google Scholar
[9]
Z. Shan and A.M. Gokhale. Representative volume element for non-uniformmicro-structure,. Computational Materials Science 24. 3 (2002), pp.361-379.
DOI: 10.1016/s0927-0256(01)00257-9
Google Scholar
[10]
I. E. Afrooz and A. Öchsner. Effect of the Carbon Nanotube Distribution on the Thermal Conductivity of Composite Materials,. Journal of Heat Transfer 137. 3 (2015), p.034501.
DOI: 10.1115/1.4029034
Google Scholar
[11]
N. Khani, M. Yildiz, and B. Koc. Elastic properties of coiled carbon nanotube reinforced nanocomposite: A finite element study,. Materials and Design 109 (2016), pp.123-132.
DOI: 10.1016/j.matdes.2016.06.126
Google Scholar
[12]
R. Makvandi and A. Öchsner. On a numerical strategy to simulate nanotube-reinforced composite materials,. Materialwissenschaft und Werkstofftechnik 45. 5 (2014), n/a-n/a.
DOI: 10.1002/mawe.201400242
Google Scholar
[13]
S. R. Bakshi, R. R. Patel, and A. Agarwal. Thermal conductivity of carbon nanotube reinforced aluminum composites: A multi-scale study using object oriented finite element method,. Computational Materials Science 50. 2 (2010), pp.419-428.
DOI: 10.1016/j.commatsci.2010.08.034
Google Scholar
[14]
H. S. Hedia et al. Effect of agglomeration and dispersion on the elastic properties of polymer nanocomposites: A Monte Carlo finite element analysis,. Materials Testing 58. 3 (2016), pp.269-279.
DOI: 10.3139/120.110843
Google Scholar
[15]
G. I. Giannopoulos, S. K. Georgantzinos, and N. K. Anifantis. A semi-continuum finite element approach to evaluate the Young's modulus of single-walled carbon nanotube reinforced composites,. Composites Part B: Engineering 41. 8 (2010).
DOI: 10.1016/j.compositesb.2010.09.023
Google Scholar
[16]
S. I. Kundalwal and M. C. Ray. Effective properties of a novel continuous fuzzy-fiber reinforced composite using the method of cells and the finite element method,. European Journal of Mechanics - A/Solids 36 (2012), pp.191-203.
DOI: 10.1016/j.euromechsol.2012.03.006
Google Scholar
[17]
M. A. Bhuiyan et al. Understanding the effect of CNT characteristics on the tensile modu- lus of CNT reinforced polypropylene using finite element analysis,. Computational Materials Science 79 (2013), pp.368-376.
DOI: 10.1016/j.commatsci.2013.06.046
Google Scholar
[18]
D. Weidt and Ł. Figiel. Effect of CNT waviness and van derWaals interaction on the nonlinear compressive behaviour of epoxy/CNT nanocomposites,. Composites Science and Technology 115 (2015), pp.52-59.
DOI: 10.1016/j.compscitech.2015.04.018
Google Scholar
[19]
S. I. Kundalwal and M. C. Ray. Effective properties of a novel composite reinforced with short carbon fibers and radially aligned carbon nanotubes,. Mechanics of Materials 53 (2012), pp.47-60.
DOI: 10.1016/j.mechmat.2012.05.008
Google Scholar
[20]
K. Alasvand Zarasvand and H. Golestanian. Determination of nonlinear behavior of multiwalled carbon nanotube reinforced polymer: Experimental, numerical, and micromechanical,. Materials and Design 109 (2016), pp.314-323.
DOI: 10.1016/j.matdes.2016.07.071
Google Scholar
[21]
X. L. Chen and Y. J. Liu. Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites,. Computational Materials Science 29. 1 (2004), pp.1-11.
DOI: 10.1016/s0927-0256(03)00090-9
Google Scholar
[22]
A. Jafari, A. A. Khatibi, and M. M. Mashhadi. Comprehensive investigation on hierarchical multiscale homogenization using Representative Volume Element for piezoelectric nanocomposites,. Composites Part B: Engineering 42. 3 (2011), pp.553-561.
DOI: 10.1016/j.compositesb.2010.10.010
Google Scholar
[23]
A. Öchsner and M. Merkel. One-Dimensional Finite Elements: An Introduction to the FE Method. Berlin and Heidelberg: Springer, (2013).
Google Scholar
[24]
A. Öchsner. Computational statics and dynamics: An introduction based on the finite element method. Singapore: Springer, (2016).
Google Scholar
[25]
Z. Javanbakht and A. Öchsner. Advanced Finite Element Simulation with MSC Marc: Application of User Subroutines. 1ST ED. 2017. Springer International, (2017).
DOI: 10.1007/978-3-319-47668-1
Google Scholar
[26]
MSC Software Corporation. Marc 2014. 2: Theory and User Information. Vol. A. Newport Beach, California: MSC Software Corporation, (2014).
Google Scholar
[27]
R. Makvandi and A. Öchsner. On a Finite Element Approach to Predict the Thermal Con- ductivity of Carbon Fiber Reinforced Composite Materials,. Defect and Diffusion Forum 354 (2014), pp.215-225.
DOI: 10.4028/www.scientific.net/ddf.354.215
Google Scholar
[28]
T. Fiedler, E. Solórzano, and A. Öchsner. Numerical and experimental analysis of the thermal conductivity of metallic hollow sphere structures,. Materials Letters 62. 8-9 (2008), pp.1204-1207. 6.
DOI: 10.1016/j.matlet.2007.08.050
Google Scholar
[29]
T. Fiedler et al. A refined finite element analysis on the thermal conductivity of perforated hollow sphere structures,. Computational Materials Science 47. 2 (2009), pp.314-319.
DOI: 10.1016/j.commatsci.2009.08.007
Google Scholar