Automatized Estimation of the Effective Thermal Conductivity of Carbon Fiber Reinforced Composite Materials

Article Preview

Abstract:

In the current study, the representative volume element (RVE) is used to model randomly generated nanocomposite structures consisting of carbon nanotubes (CNTs) embedded in an epoxy resin matrix. The finite element Method is utilized for numerical simulations and investigation of the influential parameters on the generated RVEs. In order to automatize the whole procedure - fromgenerating the finite element models to conducting the analyses - a subroutine-based programming approach is adopted using the MSC Marc finite element package and Fortran programming language. The simulations can successfully predict the increase in thermal conductivity of CNT-reinforced nanocomposites by increasing the fiber volume fraction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-183

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima. Helical microtubules of graphitic carbon,. Nature 354. 6348 (1991), pp.56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] A. Jorio, G. Dresselhaus, and M. S. Dresselhaus. Carbon nanotubes: Advanced topics in the synthesis, structure, properties and applications. Vol. 111. Topics in applied physics, 0303- 4216. Berlin: Springer-Verlag, (2008).

DOI: 10.1007/978-3-540-72865-8

Google Scholar

[3] R. H. Baughman, A. A. Zakhidov, and W. A. de Heer. Carbon nanotubes-the route toward applications,. Science (New York, N.Y. ) 297. 5582 (2002), pp.787-792.

DOI: 10.1126/science.1060928

Google Scholar

[4] S. Berber, Y. -K. Kwon, and D. Tománek. Unusually High Thermal Conductivity of Carbon Nanotubes,. Phys. Rev. Lett. 84. 20 (2000), pp.4613-4616.

DOI: 10.1103/physrevlett.84.4613

Google Scholar

[5] Z. Han and A. Fina. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review,. Progress in Polymer Science 36. 7 (2011), pp.914-944.

DOI: 10.1016/j.progpolymsci.2010.11.004

Google Scholar

[6] R. S. Ruoff and D. C. Lorents. Mechanical and thermal properties of carbon nanotubes,. Carbon 33. 7 (1995), pp.925-930.

DOI: 10.1016/0008-6223(95)00021-5

Google Scholar

[7] E. T. Thostenson, Z. Ren, and T. -W. Chou. Advances in the science and technology of carbon nanotubes and their composites: A review,. Composites Science and Technology 61. 13 (2001), p.1899-(1912).

DOI: 10.1016/s0266-3538(01)00094-x

Google Scholar

[8] H. R. Lusti and A. A. Gusev. Finite element predictions for the thermoelastic properties of nanotube reinforced polymers,. Modelling and Simulation in Materials Science and Engineering 12. 3 (2004), S107-S119.

DOI: 10.1088/0965-0393/12/3/s05

Google Scholar

[9] Z. Shan and A.M. Gokhale. Representative volume element for non-uniformmicro-structure,. Computational Materials Science 24. 3 (2002), pp.361-379.

DOI: 10.1016/s0927-0256(01)00257-9

Google Scholar

[10] I. E. Afrooz and A. Öchsner. Effect of the Carbon Nanotube Distribution on the Thermal Conductivity of Composite Materials,. Journal of Heat Transfer 137. 3 (2015), p.034501.

DOI: 10.1115/1.4029034

Google Scholar

[11] N. Khani, M. Yildiz, and B. Koc. Elastic properties of coiled carbon nanotube reinforced nanocomposite: A finite element study,. Materials and Design 109 (2016), pp.123-132.

DOI: 10.1016/j.matdes.2016.06.126

Google Scholar

[12] R. Makvandi and A. Öchsner. On a numerical strategy to simulate nanotube-reinforced composite materials,. Materialwissenschaft und Werkstofftechnik 45. 5 (2014), n/a-n/a.

DOI: 10.1002/mawe.201400242

Google Scholar

[13] S. R. Bakshi, R. R. Patel, and A. Agarwal. Thermal conductivity of carbon nanotube reinforced aluminum composites: A multi-scale study using object oriented finite element method,. Computational Materials Science 50. 2 (2010), pp.419-428.

DOI: 10.1016/j.commatsci.2010.08.034

Google Scholar

[14] H. S. Hedia et al. Effect of agglomeration and dispersion on the elastic properties of polymer nanocomposites: A Monte Carlo finite element analysis,. Materials Testing 58. 3 (2016), pp.269-279.

DOI: 10.3139/120.110843

Google Scholar

[15] G. I. Giannopoulos, S. K. Georgantzinos, and N. K. Anifantis. A semi-continuum finite element approach to evaluate the Young's modulus of single-walled carbon nanotube reinforced composites,. Composites Part B: Engineering 41. 8 (2010).

DOI: 10.1016/j.compositesb.2010.09.023

Google Scholar

[16] S. I. Kundalwal and M. C. Ray. Effective properties of a novel continuous fuzzy-fiber reinforced composite using the method of cells and the finite element method,. European Journal of Mechanics - A/Solids 36 (2012), pp.191-203.

DOI: 10.1016/j.euromechsol.2012.03.006

Google Scholar

[17] M. A. Bhuiyan et al. Understanding the effect of CNT characteristics on the tensile modu- lus of CNT reinforced polypropylene using finite element analysis,. Computational Materials Science 79 (2013), pp.368-376.

DOI: 10.1016/j.commatsci.2013.06.046

Google Scholar

[18] D. Weidt and Ł. Figiel. Effect of CNT waviness and van derWaals interaction on the nonlinear compressive behaviour of epoxy/CNT nanocomposites,. Composites Science and Technology 115 (2015), pp.52-59.

DOI: 10.1016/j.compscitech.2015.04.018

Google Scholar

[19] S. I. Kundalwal and M. C. Ray. Effective properties of a novel composite reinforced with short carbon fibers and radially aligned carbon nanotubes,. Mechanics of Materials 53 (2012), pp.47-60.

DOI: 10.1016/j.mechmat.2012.05.008

Google Scholar

[20] K. Alasvand Zarasvand and H. Golestanian. Determination of nonlinear behavior of multiwalled carbon nanotube reinforced polymer: Experimental, numerical, and micromechanical,. Materials and Design 109 (2016), pp.314-323.

DOI: 10.1016/j.matdes.2016.07.071

Google Scholar

[21] X. L. Chen and Y. J. Liu. Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites,. Computational Materials Science 29. 1 (2004), pp.1-11.

DOI: 10.1016/s0927-0256(03)00090-9

Google Scholar

[22] A. Jafari, A. A. Khatibi, and M. M. Mashhadi. Comprehensive investigation on hierarchical multiscale homogenization using Representative Volume Element for piezoelectric nanocomposites,. Composites Part B: Engineering 42. 3 (2011), pp.553-561.

DOI: 10.1016/j.compositesb.2010.10.010

Google Scholar

[23] A. Öchsner and M. Merkel. One-Dimensional Finite Elements: An Introduction to the FE Method. Berlin and Heidelberg: Springer, (2013).

Google Scholar

[24] A. Öchsner. Computational statics and dynamics: An introduction based on the finite element method. Singapore: Springer, (2016).

Google Scholar

[25] Z. Javanbakht and A. Öchsner. Advanced Finite Element Simulation with MSC Marc: Application of User Subroutines. 1ST ED. 2017. Springer International, (2017).

DOI: 10.1007/978-3-319-47668-1

Google Scholar

[26] MSC Software Corporation. Marc 2014. 2: Theory and User Information. Vol. A. Newport Beach, California: MSC Software Corporation, (2014).

Google Scholar

[27] R. Makvandi and A. Öchsner. On a Finite Element Approach to Predict the Thermal Con- ductivity of Carbon Fiber Reinforced Composite Materials,. Defect and Diffusion Forum 354 (2014), pp.215-225.

DOI: 10.4028/www.scientific.net/ddf.354.215

Google Scholar

[28] T. Fiedler, E. Solórzano, and A. Öchsner. Numerical and experimental analysis of the thermal conductivity of metallic hollow sphere structures,. Materials Letters 62. 8-9 (2008), pp.1204-1207. 6.

DOI: 10.1016/j.matlet.2007.08.050

Google Scholar

[29] T. Fiedler et al. A refined finite element analysis on the thermal conductivity of perforated hollow sphere structures,. Computational Materials Science 47. 2 (2009), pp.314-319.

DOI: 10.1016/j.commatsci.2009.08.007

Google Scholar