[1]
F. Khani, F. and A. Aziz. Thermal analysis of a longitudinal trapezoidal fin with temperature dependent thermal conductivity and heat transfer coefficient, Commun Nonlinear SciNumerSciSimult, 2010: 15(2010), 590–601.
DOI: 10.1016/j.cnsns.2009.04.028
Google Scholar
[2]
L. P. Ndlovu and R. J. Moitsheki, R. J. Analytical Solutions for Steady Heat Transfer in Longitudinal Fins with Temperature-Dependent Properties, Mathematical Problems in Engineering, vol. 2013, p.14 pages.
DOI: 10.1155/2013/273052
Google Scholar
[3]
A. Aziz and S. M. Enamul-Huq. Perturbation solution for convecting fin with temperature dependent thermal conductivity, J Heat Transfer, 97(1973), 300–301.
DOI: 10.1115/1.3450361
Google Scholar
[4]
A. Aziz, A. Perturbation solution for convecting fin with internal heat generation and temperature dependent thermal conductivity, Int. J Heat Mass Transfer, 20(1977), 1253-5.
DOI: 10.1016/0017-9310(77)90135-1
Google Scholar
[5]
A. Campo and R. J. Spaulding Coupling of the methods of successive approximations and undetermined coefficients for the prediction of the thermal behaviour of uniform circumferential fins, Heat and Mass Transfer, 34(6) (1999), 461–468.
DOI: 10.1007/s002310050283
Google Scholar
[6]
C. Chiu and C. A. Chen . A decomposition method for solving the convectice longitudinal fins with variable thermal conductivity, International Journal of Heat and Mass Transfer 45(2002), 2067-(2075).
DOI: 10.1016/s0017-9310(01)00286-1
Google Scholar
[7]
A. A. Arslanturk, decomposition method for fin efficiency of convective straight fin with temperature dependent thermal conductivity, IntCommun Heat Mass Transfer, 32(2005), 831–841.
DOI: 10.1016/j.icheatmasstransfer.2004.10.006
Google Scholar
[8]
D. D. Ganji, The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer, Phys Lett A: 355(2006), 337–341.
DOI: 10.1016/j.physleta.2006.02.056
Google Scholar
[9]
J. H. He. Homotopy perturbation method, Comp Methods ApplMechEng, 178(1999), 257–262.
Google Scholar
[10]
M. S. H. Chowdhury and I. Hashim. Analytical solutions to heat transfer equations by homotopy-perturbation method revisited, Physical Letters A, 372(2008), 1240-1243.
DOI: 10.1016/j.physleta.2007.09.015
Google Scholar
[11]
A. Rajabi, . Homotopy perturbation method for fin efficiency of convective straight fins with temperature dependent thermal conductivity . Physics Letters A , 364(2007), 33-37.
DOI: 10.1016/j.physleta.2006.11.062
Google Scholar
[12]
I. Mustafa. Application of Homotopy analysis method for fin efficiency of convective straight fin with temperature dependent thermal conductivity. Mathematics and Computers Simulation, 79(2008), 189 – 200.
DOI: 10.1016/j.matcom.2007.11.009
Google Scholar
[13]
S. B. Coskun. and M. T. Atay. Analysis of Convective Straight and Radial Fins with Temperature Dependent Thermal Conductivity Using Variational Iteration Method with Comparision with respect to finite Element Analysis. Mathematical problem in Engineering, 2007 , Article ID 42072, 15 pages.
DOI: 10.1155/2007/42072
Google Scholar
[14]
E. M. Languri., D. D. Ganji and N. Jamshidi. Variational Iteration and Homotopy perturbation methods for fin efficiency of convective straight fins with temperature dependent thermal conductivity. 5th WSEAS Int . Conf . On FLUID MECHANICS (fluids 08) Acapulco, Mexico January, 25 -27, (2008).
DOI: 10.1108/09615531211199872
Google Scholar
[15]
S. B. Coskun and M. T. Atay. Fin efficiency analysis of convective straight fin with temperature dependent thermal conductivity using variational iteration method, ApplThermEng, 28(2008), 2345–2352.
DOI: 10.1016/j.applthermaleng.2008.01.012
Google Scholar
[16]
M. T. Atay and S. B. Coskun. Comparative Analysis of Power-Law Fin-Type Problems Using Variational Iteration Method and Finite Element Method, Mathematical Problems in Engineering, 2008, 9 pages.
DOI: 10.1155/2008/635231
Google Scholar
[17]
G. Domairry and M. Fazeli. Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature dependent thermal conductivity. Communication in Nonlinear Science and Numerical Simulation 14(2009), 489-499.
DOI: 10.1016/j.cnsns.2007.09.007
Google Scholar
[18]
M. S. H. Chowdhury, Hashim, I. and O. Abdulaziz. Comparison of homotopy analysis method and homotopy-permutation method for purely nonlinear fin-type problems, Communications in Nonlinear Science and Numerical Simulation , 14(2009), 371-378.
DOI: 10.1016/j.cnsns.2007.09.005
Google Scholar
[19]
F. Khani, M. A. Raji and H. H. Nejad. Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient, Commun Nonlinear SciNumerSimulat, 2009: 14(2009) , 3327-3338.
DOI: 10.1016/j.cnsns.2009.01.012
Google Scholar
[20]
R. J. Moitheki, T. Hayat and M. Y. Malik. Some exact solutions of the fin problem with a power law temperature dependent thermal conductivity . Nonlinear Analysis real world Application, 2010: 11, 3287 – 3294.
DOI: 10.1016/j.nonrwa.2009.11.021
Google Scholar
[21]
K. Hosseini, B. Daneshian, N. Amanifard and R. Ansari. . Homotopy Analysis Method for a Fin with Temperature Dependent Internal Heat Generation and Thermal Conductivity. International Journal of Nonlinear Science, 14(2012), 2, 201-210.
Google Scholar
[22]
A. A. Joneidi , D. D. Ganji, Babaelahi, M. Differential Transformation Method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity. International communication in Heat and Mass transfer, 36(2009).
DOI: 10.1016/j.icheatmasstransfer.2009.03.020
Google Scholar
[23]
A. Moradi and H. Ahmadikia. Analytical Solution for different profiles of fin with temperature dependent thermal conductivity. Hindawi Publishing Corporation Mathematical Problem in Engineering volume 2010, Article ID 568263, 15.
DOI: 10.1155/2010/568263
Google Scholar
[24]
A. Moradi and H. Ahmadikia. Investigation of effect thermal conductivity on straight fin performance with DTM, International Journal of Engineering and Applied Sciences (IJEAS), 1(2011), 42 -54.
Google Scholar
[25]
S. Mosayebidorcheh, D. D. Ganji, M. Farzinpoor. Approximate Solution of the nonlinear heat transfer equation of a fin with the power-law temperature-dependent thermal conductivity and heat transfer coefficient, Propulsion and Power Reasearch, 2014: 41-47.
DOI: 10.1016/j.jppr.2014.01.005
Google Scholar
[26]
S. E. Ghasemi and M. Hatami and D. D. Ganji Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation, Cases Studies in Thermal Engineering., 4(2014), 1-8.
DOI: 10.1016/j.csite.2014.05.002
Google Scholar
[27]
D. D. Ganji and A. S. Dogonchi. Analytical investigation of convective heat transfer of a longitudinal fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation, 2014: vol. 9(21), 466-474.
DOI: 10.1016/j.applthermaleng.2016.04.121
Google Scholar
[28]
A. Fernandez. On some approximate methods for nonlinear models. Appl Math Comput., 215(2009): 168-74.
Google Scholar
[29]
A. Aziz and A. A. Bouaziz A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity, Energy Conversion and Management, 52(2011): 2876-2882.
DOI: 10.1016/j.enconman.2011.04.003
Google Scholar