Finite Volume Method for Analysis of Convective Longitudinal Fin with Temperature-Dependent Thermal Conductivity and Internal Heat Generation

Article Preview

Abstract:

In this study, heat transfer in a longitudinal rectangular fin with temperature-dependent thermal properties and internal heat generation has been analyzed using finite volume method. The numerical solution was validated with the exact solution for the linear problem. The developed heat transfer models were used to investigate the effects of thermo-geometric parameters, coefficient of heat transfer and thermal conductivity (non-linear) parameters on the temperature distribution, heat transfer and thermal performance of the longitudinal rectangular fin. From the results, it shows that the fin temperature distribution, the total heat transfer, and the fin efficiency are significantly affected by the thermo-geometric of the fin. Therefore, the results obtained in this analysis serve as basis for comparison of any other method of analysis of the problem and they also provide platform for improvement in the design of fin in heat transfer equipment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-120

Citation:

Online since:

April 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Khani, F. and A. Aziz. Thermal analysis of a longitudinal trapezoidal fin with temperature dependent thermal conductivity and heat transfer coefficient, Commun Nonlinear SciNumerSciSimult, 2010: 15(2010), 590–601.

DOI: 10.1016/j.cnsns.2009.04.028

Google Scholar

[2] L. P. Ndlovu and R. J. Moitsheki, R. J. Analytical Solutions for Steady Heat Transfer in Longitudinal Fins with Temperature-Dependent Properties, Mathematical Problems in Engineering, vol. 2013, p.14 pages.

DOI: 10.1155/2013/273052

Google Scholar

[3] A. Aziz and S. M. Enamul-Huq. Perturbation solution for convecting fin with temperature dependent thermal conductivity, J Heat Transfer, 97(1973), 300–301.

DOI: 10.1115/1.3450361

Google Scholar

[4] A. Aziz, A. Perturbation solution for convecting fin with internal heat generation and temperature dependent thermal conductivity, Int. J Heat Mass Transfer, 20(1977), 1253-5.

DOI: 10.1016/0017-9310(77)90135-1

Google Scholar

[5] A. Campo and R. J. Spaulding Coupling of the methods of successive approximations and undetermined coefficients for the prediction of the thermal behaviour of uniform circumferential fins, Heat and Mass Transfer, 34(6) (1999), 461–468.

DOI: 10.1007/s002310050283

Google Scholar

[6] C. Chiu and C. A. Chen . A decomposition method for solving the convectice longitudinal fins with variable thermal conductivity, International Journal of Heat and Mass Transfer 45(2002), 2067-(2075).

DOI: 10.1016/s0017-9310(01)00286-1

Google Scholar

[7] A. A. Arslanturk, decomposition method for fin efficiency of convective straight fin with temperature dependent thermal conductivity, IntCommun Heat Mass Transfer, 32(2005), 831–841.

DOI: 10.1016/j.icheatmasstransfer.2004.10.006

Google Scholar

[8] D. D. Ganji, The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer, Phys Lett A: 355(2006), 337–341.

DOI: 10.1016/j.physleta.2006.02.056

Google Scholar

[9] J. H. He. Homotopy perturbation method, Comp Methods ApplMechEng, 178(1999), 257–262.

Google Scholar

[10] M. S. H. Chowdhury and I. Hashim. Analytical solutions to heat transfer equations by homotopy-perturbation method revisited, Physical Letters A, 372(2008), 1240-1243.

DOI: 10.1016/j.physleta.2007.09.015

Google Scholar

[11] A. Rajabi, . Homotopy perturbation method for fin efficiency of convective straight fins with temperature dependent thermal conductivity . Physics Letters A , 364(2007), 33-37.

DOI: 10.1016/j.physleta.2006.11.062

Google Scholar

[12] I. Mustafa. Application of Homotopy analysis method for fin efficiency of convective straight fin with temperature dependent thermal conductivity. Mathematics and Computers Simulation, 79(2008), 189 – 200.

DOI: 10.1016/j.matcom.2007.11.009

Google Scholar

[13] S. B. Coskun. and M. T. Atay. Analysis of Convective Straight and Radial Fins with Temperature Dependent Thermal Conductivity Using Variational Iteration Method with Comparision with respect to finite Element Analysis. Mathematical problem in Engineering, 2007 , Article ID 42072, 15 pages.

DOI: 10.1155/2007/42072

Google Scholar

[14] E. M. Languri., D. D. Ganji and N. Jamshidi. Variational Iteration and Homotopy perturbation methods for fin efficiency of convective straight fins with temperature dependent thermal conductivity. 5th WSEAS Int . Conf . On FLUID MECHANICS (fluids 08) Acapulco, Mexico January, 25 -27, (2008).

DOI: 10.1108/09615531211199872

Google Scholar

[15] S. B. Coskun and M. T. Atay. Fin efficiency analysis of convective straight fin with temperature dependent thermal conductivity using variational iteration method, ApplThermEng, 28(2008), 2345–2352.

DOI: 10.1016/j.applthermaleng.2008.01.012

Google Scholar

[16] M. T. Atay and S. B. Coskun. Comparative Analysis of Power-Law Fin-Type Problems Using Variational Iteration Method and Finite Element Method, Mathematical Problems in Engineering, 2008, 9 pages.

DOI: 10.1155/2008/635231

Google Scholar

[17] G. Domairry and M. Fazeli. Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature dependent thermal conductivity. Communication in Nonlinear Science and Numerical Simulation 14(2009), 489-499.

DOI: 10.1016/j.cnsns.2007.09.007

Google Scholar

[18] M. S. H. Chowdhury, Hashim, I. and O. Abdulaziz. Comparison of homotopy analysis method and homotopy-permutation method for purely nonlinear fin-type problems, Communications in Nonlinear Science and Numerical Simulation , 14(2009), 371-378.

DOI: 10.1016/j.cnsns.2007.09.005

Google Scholar

[19] F. Khani, M. A. Raji and H. H. Nejad. Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient, Commun Nonlinear SciNumerSimulat, 2009: 14(2009) , 3327-3338.

DOI: 10.1016/j.cnsns.2009.01.012

Google Scholar

[20] R. J. Moitheki, T. Hayat and M. Y. Malik. Some exact solutions of the fin problem with a power law temperature dependent thermal conductivity . Nonlinear Analysis real world Application, 2010: 11, 3287 – 3294.

DOI: 10.1016/j.nonrwa.2009.11.021

Google Scholar

[21] K. Hosseini, B. Daneshian, N. Amanifard and R. Ansari. . Homotopy Analysis Method for a Fin with Temperature Dependent Internal Heat Generation and Thermal Conductivity. International Journal of Nonlinear Science, 14(2012), 2, 201-210.

Google Scholar

[22] A. A. Joneidi , D. D. Ganji, Babaelahi, M. Differential Transformation Method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity. International communication in Heat and Mass transfer, 36(2009).

DOI: 10.1016/j.icheatmasstransfer.2009.03.020

Google Scholar

[23] A. Moradi and H. Ahmadikia. Analytical Solution for different profiles of fin with temperature dependent thermal conductivity. Hindawi Publishing Corporation Mathematical Problem in Engineering volume 2010, Article ID 568263, 15.

DOI: 10.1155/2010/568263

Google Scholar

[24] A. Moradi and H. Ahmadikia. Investigation of effect thermal conductivity on straight fin performance with DTM, International Journal of Engineering and Applied Sciences (IJEAS), 1(2011), 42 -54.

Google Scholar

[25] S. Mosayebidorcheh, D. D. Ganji, M. Farzinpoor. Approximate Solution of the nonlinear heat transfer equation of a fin with the power-law temperature-dependent thermal conductivity and heat transfer coefficient, Propulsion and Power Reasearch, 2014: 41-47.

DOI: 10.1016/j.jppr.2014.01.005

Google Scholar

[26] S. E. Ghasemi and M. Hatami and D. D. Ganji Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation, Cases Studies in Thermal Engineering., 4(2014), 1-8.

DOI: 10.1016/j.csite.2014.05.002

Google Scholar

[27] D. D. Ganji and A. S. Dogonchi. Analytical investigation of convective heat transfer of a longitudinal fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation, 2014: vol. 9(21), 466-474.

DOI: 10.1016/j.applthermaleng.2016.04.121

Google Scholar

[28] A. Fernandez. On some approximate methods for nonlinear models. Appl Math Comput., 215(2009): 168-74.

Google Scholar

[29] A. Aziz and A. A. Bouaziz A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity, Energy Conversion and Management, 52(2011): 2876-2882.

DOI: 10.1016/j.enconman.2011.04.003

Google Scholar