[1]
A. Nisar, N. Afzulpurkar, B. Mahaisavariya, A. Tuantranont, MEMS-based micropumps in drug delivery and biomedical applications. Sens. Actuators B Chem. 130 (2008) 917–942.
DOI: 10.1016/j.snb.2007.10.064
Google Scholar
[2]
L. Capretto, W. Cheng, M. Hill, X. Zhang, Micromixing within microfluidic devices. Top. Curr. Chem., 304 (2011) 27–68.
Google Scholar
[3]
C. Kleinstreuer, J. Li, J. Koo, Microfluidics of nano-drug delivery. Int. J. Heat Mass Trans., 51 (2008) 5590–5597.
DOI: 10.1016/j.ijheatmasstransfer.2008.04.043
Google Scholar
[4]
D. C. Tretheway, C. D. Meinhart, A generating mechanism for apparent fluid slip in hydrophobic microchannels. Phys. Fluids, 16 (2004) 1509–1515.
DOI: 10.1063/1.1669400
Google Scholar
[5]
E. M. Sparrow, E. R. Eckert, W. J. Minkowycz, Transpiration cooling in a magnetohydrodynamic stagnation-point flow. Appl Sci Res A 11 (1962) 125–147.
DOI: 10.1007/bf03184718
Google Scholar
[6]
S. Rosseland, Theoretical astrophysics. Oxford University, New York, NY, USA, (1936).
Google Scholar
[7]
O. D. Makinde, A. Ogulu, The effect of thermal radiation on the heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate permeated by a transverse magnetic field. Chemical Engineering Communications, 195 (12) (2008).
DOI: 10.1080/00986440802115549
Google Scholar
[8]
O. D. Makinde, Free-convection flow with thermal radiation and mass transfer past a moving vertical porous plate. International Communications in Heat and Mass transfer, 32 (2005) 1411-1419.
DOI: 10.1016/j.icheatmasstransfer.2005.07.005
Google Scholar
[9]
K. R. Cramer, S. I. Pai, Magnetofluid dynamics for engineers and applied physicists. McGraw–Hill, New York, (1973).
Google Scholar
[10]
O. D. Makinde, O. O. Onyejekwe, A numerical study of MHD generalized Couette flow and heat transfer with variable viscosity and electrical conductivity. Journal of Magnetism and Magnetic Materials, 323 (2011) 2757–2763.
DOI: 10.1016/j.jmmm.2011.05.040
Google Scholar
[11]
O. D. Makinde, T. Chinyoka, Numerical investigation of buoyancy effects on hydromagnetic unsteady flow through a porous channel with suction/injection. Journal of Mechanical Science and Technology, 27 (5) (2013) 1557-1568.
DOI: 10.1007/s12206-013-0221-9
Google Scholar
[12]
O. D. Makinde, W. A. Khan, J. R. Culham, MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer. International Journal of Heat and Mass Transfer, 93 (2016) 595–604.
DOI: 10.1016/j.ijheatmasstransfer.2015.10.050
Google Scholar
[13]
S. Mukhopadhyay, Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation. Ain Shams Eng. J., 4(3) (2013) 485-491.
DOI: 10.1016/j.asej.2012.10.007
Google Scholar
[14]
P. R. Sharma, G. Singh, Effects of variable thermal conductivity, viscous dissipation on Steady MHD natural convection flow of low Prandtl fluid on an inclined porous plate with Ohmic heating. Meccanica, 45 (2010) 237- 247.
DOI: 10.1007/s11012-009-9240-0
Google Scholar
[15]
Y. J. Kim, Unsteady MHD convective heat transfer past a semi-infinite vertical porous moving plate with variable suction. International Journal of Engineering Science, 38 (2000) 833-845.
DOI: 10.1016/s0020-7225(99)00063-4
Google Scholar
[16]
K. Bhattacharyya, G. C. Layek, Chemically reactive solute distribution in MHD boundary layer flow over a permeable stretching sheet with suction or blowing. Chem. Eng. Commun., 197 (2010) 1527-1540.
DOI: 10.1080/00986445.2010.485012
Google Scholar
[17]
L. Zheng, J. Niu, X. Zhang, Y. Gao, MHD flow and heat transfer over a porous shrinking surface with velocity slip and temperature jump. Math. Comp. Model., 56 (2012), 133-144.
DOI: 10.1016/j.mcm.2011.11.080
Google Scholar
[18]
N. Kishan, S. Jagadha, Influence of thermophoresis on heat and mass transfer under non-Darcy MHD mixed convection along a vertical flat plate embedded in a porous medium in the presence of radiation. Thermophys. Aeromech. 23(1) (2016) 97-108.
DOI: 10.1134/s0869864316010108
Google Scholar
[19]
D. Hunegnaw, N. Kishan, Scaling group analysis on MHD effects on heat transfer near a stagnation point on a linearly stretching sheet with variable viscosity and thermal conductivity, viscous dissipation and heat source/sink. Theoretical and Applied Mechanics, 42(2) (2015).
DOI: 10.2298/tam1502111d
Google Scholar
[20]
D. Hunegnaw, N. Kishan, Unsteady MHD flow of heat and mass transfer of nanofluids over stretching sheet with a non-uniform heat/source/sink considering viscous dissipation and chemical reaction. International Journal of Engineering Research in Afrika, 14 (2015).
DOI: 10.4028/www.scientific.net/jera.14.1
Google Scholar
[21]
P. Kavitha, N. Kishan, MHD flow of a non-Newtonian power-law fluid over a stretching sheet with thermal radiation, viscous dissipation and slip boundary conditions. Acta Technica, 59(4) (2014) 355–376.
DOI: 10.21694/2378-704x.16001
Google Scholar
[22]
E. H. Lieb, J. Yngvason, The physics and mathematics of the second law of thermodynamics. Physics Reports, 310 (1999) 1–96.
DOI: 10.1016/s0370-1573(98)00082-9
Google Scholar
[23]
A. Bejan, A., A study of entropy generation in fundamental convective heat transfer. J. Heat Transfer, 101 (1979) 718-725.
DOI: 10.1115/1.3451063
Google Scholar
[24]
A. Bejan, A., Tsatsaronis, G., Moran, M., Thermal design and optimization, Wiley, New York, USA, (1996).
Google Scholar
[25]
O. D. Makinde, Entropy analysis for MHD boundary layer flow and heat transfer over a flat plate with a convective surface boundary condition. Int. J. Exergy, 10 (2) (2012) 142-154.
DOI: 10.1504/ijex.2012.045862
Google Scholar
[26]
S. DasAffiliated withDepartment of Mathematics, University of Gour Banga Email author, S. Chakraborty, R. N. Jana, O. D. Makinde, Affiliated withFaculty of Military Science, Stellenbosch University Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition. Applied Mathematics and Mechanics, 36 (12) (2015).
DOI: 10.1007/s10483-015-2003-6
Google Scholar
[27]
G. Ibáñez, S. Cuevas, Entropy generation minimization of a MHD flow in a microchannel. Energy, 35 (2010) 4149–4155.
DOI: 10.1016/j.energy.2010.06.035
Google Scholar
[28]
L. C. Woods, Thermodynamics of fluid systems. Oxford University Press, Oxford, UK, (1975).
Google Scholar
[29]
T. Chinyoka, O. D. Makinde, Analysis of entropy generation rate in an unsteady porous channel flow with Navier slip and convective cooling. Entropy, 15 (2013) 2081-(2099).
DOI: 10.3390/e15062081
Google Scholar
[30]
S. Mahmud, R. A. Fraser, Flow, thermal and entropy generation characteristic inside a porous channel with viscous dissipation. Int. J. Therm. Sci. 44 (2005), 21-32.
DOI: 10.1016/j.ijthermalsci.2004.05.001
Google Scholar
[31]
O. D. Makinde, O. A. Beg, On inherent irreversibility in a reactive hydromagnetic channel flow. Journal of Thermal Science 19 (1) (2010), 72-79, (2010).
DOI: 10.1007/s11630-010-0072-y
Google Scholar
[32]
O. D. Makinde, Entropy analysis for MHD boundary layer flow and heat transfer over a flat plate with a convective surface boundary condition. International Journal of Exergy, 10 (2) (2012) 142-154.
DOI: 10.1504/ijex.2012.045862
Google Scholar
[33]
M. H. Yazdi, S. Abdullah, I. Hashim, K. Sopian, Reducing entropy generation in MHD fluid flow over open parallel microchannels embedded in a micropatterned permeable surface. Entropy, 15(2013) 4822-4843.
DOI: 10.3390/e15114822
Google Scholar
[34]
T.Y. Na, Computational methods in engineering boundary value problem. Academic Press, (1979).
Google Scholar