[1]
H. Blasius, Grenzschichten in Flussigkeiten mit kleiner Reibung, Z. Math. Phys. 56(1908)1-37.
Google Scholar
[2]
H. Schlichting, K. Gersten Boundary layer theory, Heidelberg Springer Verlag, Berlin, (2000).
Google Scholar
[3]
O. D. Makinde: Effects of viscous dissipation and Newtonian heating on boundary layer flow of nanofluids over a flat plate. International Journal of Numerical Methods for Heat and Fluid flow, 23(8) (2013) 1291-1303.
DOI: 10.1108/hff-12-2011-0258
Google Scholar
[4]
R. C. Bataller, Radiation effects for the Blasius and Sakiadis flows with a convective surface boundary condition. Applied Mathematics and Computation, 206 (2008) 832–840.
DOI: 10.1016/j.amc.2008.10.001
Google Scholar
[5]
S. Das, R. N. Jana, O. D. Makinde, Magnetohydrodynamic mixed convective slip over an inclined porous plate with viscous dissipation and Joule heating. Alexandria Engineering Journal, 54(2) (2015) 251-261.
DOI: 10.1016/j.aej.2015.03.003
Google Scholar
[6]
A. Aziz, A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009) 1064-1068.
DOI: 10.1016/j.cnsns.2008.05.003
Google Scholar
[7]
W.A. Khan, R. Culham, O.D. Makinde, Hydromagnetic blasius flow of power‐law nanofluids over a convectively heated vertical plate. The Canadian Journal of Chemical Engineering, 93 (10) (2015) 1830-1837.
DOI: 10.1002/cjce.22280
Google Scholar
[8]
E.M. Hady, A.Y. Bakier, R.S.R. Gorla, Mixed convection boundary layer flow on a continuous flat plate with variable viscosity, Heat Mass Transfer 31 (1996) 169.
DOI: 10.1007/bf02333315
Google Scholar
[9]
M.A. Hossain, K. Khanafer, K. Vafai, The effect of radiation on free convection flow of fluid with variable viscosity from a porous vertical plate, Int. J. Therm. Sci. 40 (2001) 115–124.
DOI: 10.1016/s1290-0729(00)01200-x
Google Scholar
[10]
O.D. Makinde, W.A. Khan, J.R. Culham: MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer. International Journal of Heat and Mass Transfer, 93 (2016) 595–604.
DOI: 10.1016/j.ijheatmasstransfer.2015.10.050
Google Scholar
[11]
S. J. Kim, K. Vafai, Analysis of natural convection about a vertical plate embedded in porous medium, International journal of Heat and Mass Transfer, 32 (1989) 665-677.
DOI: 10.1016/0017-9310(89)90214-7
Google Scholar
[12]
O. D. Makinde: MHD mixed-convection interaction with thermal radiation and nth order chemical reaction past a vertical porous plate embedded in a porous medium. Chemical Engineering Communications, 198 (4) (2011) 590-608.
DOI: 10.1080/00986445.2010.500151
Google Scholar
[13]
F.S. Ibrahim, A.M. Elaiw, A.A. Bakr, Effect of the chemical reaction and radiation absorption on the unsteady MHD free convection flow past a semi-infinite vertical permeable moving plate with heat source and suction, Commun. Nonlinear Sci. Numer. Simul. 13 (6) (2008).
DOI: 10.1016/j.cnsns.2006.09.007
Google Scholar
[14]
O. D. Makinde, A. Ogulu, The effect of thermal radiation on the heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate permeated by a transverse magnetic field, Chem. Eng. Commun. 195 (2008) 1575–1584.
DOI: 10.1080/00986440802115549
Google Scholar
[15]
A. Apelblat, Mass transfer with a chemical reaction of the first order: analytical solutions, Chem. Eng. J. 19 (1980) 19–37.
DOI: 10.1016/0300-9467(80)85074-x
Google Scholar
[16]
A.Y. Ghaly, M.A. Seddeek, Chebyshev finite difference method for the effect of chemical reaction, heat and mass transfer on laminar flow along a semiinfinite horizontal plate with temperature dependent viscosity, Chaos Solitons Fractals, 19 (2004).
DOI: 10.1016/s0960-0779(03)00069-9
Google Scholar
[17]
O. D. Makinde, MHD mixed-convection interaction with thermal radiation and nth order chemical reaction past a vertical porous plate embedded in a porous medium. Chem. Eng. Comm. 198 (2011) 590–608.
DOI: 10.1080/00986445.2010.500151
Google Scholar
[18]
J.G. Michael, R.N. Philip, Numerical method for the solution of large systems of differential equations of the boundary-layer type, NASA TN D-7068, (1972).
Google Scholar