[1]
Casson, N; A flow equation for pigment oil-suspensions of the printing ink type, Rheolgy of DisperseSystems (C.C. Mill, ed. ), p.84. Pergamon Press, London (1959).
Google Scholar
[2]
Joye, D. D; Shear rate and viscosity corrections for a Casson fluid in cylindrical (Couette) geometries. J Colloid Interface Sci. 2003; 267, 204-210.
DOI: 10.1016/j.jcis.2003.07.035
Google Scholar
[3]
Pramanik. S; Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation. Ain Shams Engrg J. 2014; 5, 205-212.
DOI: 10.1016/j.asej.2013.05.003
Google Scholar
[4]
HA Attia. H. A, and Sayed-Ahmed.M. E; Transient MHD Couette flow of a Casson fluid between parallel plates with heat transfer. Italian J Pure Appl Math. 2010; 27, 19-38.
Google Scholar
[5]
Chiu-On, Ng; Combined pressure-driven and electroosmotic flow of Casson fluid through a slit microchannel JournalofNon-NewtonianFluidMechanics198(2013)1–9.
DOI: 10.1016/j.jnnfm.2013.03.003
Google Scholar
[6]
Das, M; Mahato, R; Nandkeolyar, R; Newtonian heating effect on unsteady hydromagnetic Cassonfluid flow past a flat plate with heat and mass transfer. Alexandria EngineeringJournal (2015) 54, 871–879.
DOI: 10.1016/j.aej.2015.07.007
Google Scholar
[7]
Reddy, P. B; Magnetohydrodynamic flow of a Casson fluid over an exponentially incline permeable stretching surface with thermal radiation and chemical reaction. Ain Shams Engineering Journal (2016).
DOI: 10.1016/j.asej.2015.12.010
Google Scholar
[8]
Mishra S. R, Jena S, Numerical Solution of Boundary Layer MHD Flow With Viscous Dissipation, The Scientific World Journal, 2014(2014) Article ID 756498, 8 pages.
DOI: 10.1155/2014/756498
Google Scholar
[9]
Bhukta D, Dash G. C, Mishra S. Baag R. S, Dissipation effect on MHD mixed convective flow over a stretching sheet through porous medium with non-uniform heat source/sink , Ain Shams Engineering Journal.
DOI: 10.1016/j.asej.2015.08.017
Google Scholar
[10]
Makinde O. D, Mishra S. R, On stagnation point flow of variable viscosity nanofluids past a stretching surface with radiative heat, International Journal of Applied and Computational Mathematics.
DOI: 10.1007/s40819-015-0111-1
Google Scholar
[11]
Makinde,O. D, and Aziz, A; MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition. Int. J. Therm. Sci. 2010, 49, 1813–1820.
DOI: 10.1016/j.ijthermalsci.2010.05.015
Google Scholar
[12]
S Nadeem, N; Haq, R. U; Akbar, N. S, and Khan, Z. H; MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. Alexandria Engrg J. 2013; 52, 577-582.
DOI: 10.1016/j.aej.2013.08.005
Google Scholar
[13]
Makinde, O. D; Effect of variable viscosity on thermal boundary layer over a permeable flat plate with radiation and a convective surface boundary condition. Journal of Mechanical Science and Technology, Vol. 26, No 5, 1615-1622, (2012).
DOI: 10.1007/s12206-012-0302-1
Google Scholar
[14]
Brewster.M. Q; Thermal Radiative Transfer and Properties. John Wiley and sons Inc. New York, USA, (1992).
Google Scholar
[15]
Raptis. A; Radiation and viscoelastic flow. IntCommun Heat Mass Trans. 1999; 26, 889-895.
Google Scholar
[16]
Nield, D. A; Convection in Porous Media; Springer: New York, NY, USA, (2006).
Google Scholar
[17]
Bejan, A; A study of entropy generation in fundamental convective heat transfer. J. Heat Transfer, Vol. 101, 718-725, (1979).
DOI: 10.1115/1.3451063
Google Scholar
[18]
Bejan, A; Entropy Generation Minimization; CRC: Boca Raton, FL, USA, (1996).
Google Scholar
[19]
Srinivas Jangili, Nagaraju Gajjela, O. Anwar Beg: Mathematical modeling of entropy generation in magnetized micropolar flow between co-rotating cylinders with internal heat generation. Alexandria Engineering Journal (2016) 55, 1969–(1982).
DOI: 10.1016/j.aej.2016.07.020
Google Scholar
[20]
Jangili S, Adesanya S O, Falade J A, Gajjela N: Entropy Generation Analysis for a Radiative Micropolar Fluid Flow Through a Vertical Channel Saturated with Non-Darcian Porous Medium. International Journal of Applied and Computational Mathematics (2017).
DOI: 10.1007/s40819-017-0322-8
Google Scholar
[21]
Wood, L. C; Thermodynamics of Fluid Systems; Oxford University Press: Oxford, UK, (1975).
Google Scholar
[22]
Eegunjobi, A. S and Makinde, O. D; Second law analysis for MHD permeable channel flow with variable electrical conductivity and asymmetric Navier slips. Open Physics, Vol. 13, 100-110, (2015).
DOI: 10.1515/phys-2015-0014
Google Scholar
[23]
Eegunjobi, A. S and Makinde, O. D; Combined effect of buoyancy force and Navier slip on entropy generation in a vertical porous channel. Entropy 2012, 33, 692–698.
DOI: 10.3390/e14061028
Google Scholar
[24]
Cebeci, T and Bradshaw. P; Physical and Computational Aspects of Convective Heat Transfer; Springer: New York, NY, USA, (1988).
Google Scholar