Effect of Thermophoresis and Brownian Moment on 2D MHD Nanofluid Flow over an Elongated Sheet

Article Preview

Abstract:

In this study, we investigated the 2D MHD flow of a dissipative Maxwell nanofluid past an elongated sheet with uneven heat source/sink, Brownian moment and thermophoresis effects. The flow governing PDEs are transmuted into nonlinear ODEs adopting the suitable similarity transmissions. Further, the RK-4 technique is employed to acquire the numerical solutions. The impact of pertinent parameters such as thermal radiation, frictional heating, irregular heat source/sink, biot number, Brownian moment and thermophoresis on the flow quantities such as velocity, thermal and concentration fields likewise friction factor, heat and mass transfer rates are bestowed with the succour of graphs and tables. Dual nature is witnessed for Newtonian and non-Newtonian fluid cases. It is noticed that the heat and mass transfer rate in Newtonian fluid larger as compared with non-Newtonian fluid.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-126

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.S.K. Raju, N. Sandeep, Unsteady three-dimensional flow of Casson-Carreau fluids past a stretching surface, Alexandria Engineering Journal, 55 (2016) 1115-1126.

DOI: 10.1016/j.aej.2016.03.023

Google Scholar

[2] A.K. Abdul Hakeem, P. Renuka, N. Vishnu Ganesh, R. Kalaivanan, B. Ganga, Influence of inclined Lorentz forces on boundary layer flow of Casson fluid over an impermeable stretching sheet with heat transfer, Journal of Magnetism and Magnetic Materials, 401 (2016).

DOI: 10.1016/j.jmmm.2015.10.026

Google Scholar

[3] C. Sulochana, G.P. Ashwinkumar, N. Sandeep, Transpiration effect on stagnation-point flow of a Carreau nanofluid in the presence of thermophoresis and Brownian motion, Alexandria Engineering Journal, 55 (2016) 1151-1157.

DOI: 10.1016/j.aej.2016.03.031

Google Scholar

[4] T. Hayat, Z. Abbas, M. Sajid, Series solution for the upper-convected Maxwell fluid over a porous stretching plate, Physics Letters A, 358 (2006) 396-403.

DOI: 10.1016/j.physleta.2006.04.117

Google Scholar

[5] M. Subhas Abel, M.M. Nandeppanavar, Heat transfer in MHD viscoelastic boundary layer flow over a stretching sheet with non-uniform heat source/sink, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009) 2120-2131.

DOI: 10.1016/j.cnsns.2008.06.004

Google Scholar

[6] T. Hayat. Z. Iqbal, M. Mustafa, A. Alsaedi, Momentum and heat transfer of an upper convected Maxwell fluid over a moving surface with convective boundary conditions, Nuclear Engineering and Design, 252 (2012) 242-247.

DOI: 10.1016/j.nucengdes.2012.07.012

Google Scholar

[7] S. Nadeem, R. Ul, Z.H. Khan, Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles, Journal of the Taiwan Institute of Chemical Engineers, 45(1) (2014) 121-126.

DOI: 10.1016/j.jtice.2013.04.006

Google Scholar

[8] G.K. Ramesh, B.J. Gireesha, Influence of heat source/sink on a Maxwell fluid over a stretching surface with convective boundary condition in the presence of nanoparticles, Ain Shams Engineering Journal, 5(2) (2014) 991-998.

DOI: 10.1016/j.asej.2014.04.003

Google Scholar

[9] W.A. Khan, R. Culham, O.D. Makinde, Hydromagnetic Blasius flow of power-law nanofluids over a convectively heated verticle plate. Can. J. Chem. Eng., 93 (10) (2015) 1830-1837.

DOI: 10.1002/cjce.22280

Google Scholar

[10] A.A. Afify, Nasser S. Elgazery, Effect of a chemical reaction on magnetohydrodynamic boundary layer flow of a Maxwell fluid over a stretching sheet with nanoparticles, Particuology, 29 (2016) 154-161.

DOI: 10.1016/j.partic.2016.05.003

Google Scholar

[11] C.S.K. Raju, N. Sandeep, S. Saleem, Effects of induced magnetic field and homogeneous-heterogeneous reactions on stagnation flow of a Casson fluid, Engineering Science and Technology, an International Journal, 19(2) (2016) 875-887.

DOI: 10.1016/j.jestch.2015.12.004

Google Scholar

[12] S.U.S. Choi, Enhancing thermal Conductivity of fluids with nano particles, The proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, ASME, San Francisco (1995) 66, 99-105.

Google Scholar

[13] X. Wang and Arun S. Mujumdar, Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Sciences 46 (2007) 1-19.

Google Scholar

[14] P. Rana, R. Bhargava, Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: a numerical study, Commun. Nonlinear Sci. Numer. Simul., 17 (2012) 212-226.

DOI: 10.1016/j.cnsns.2011.05.009

Google Scholar

[15] N. Sandeep, C. Sulochana, B. Rushi Kumar, MHD boundary layer flow and heat transfer past a stretching/shrinking sheet in a nanofluid, Journal of nanofluids, 4(4) (2015) 1-6.

DOI: 10.1166/jon.2015.1181

Google Scholar

[16] O.D. Makinde, F. Mabood, W.A. Khan, M.S. Tshehla, MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat. Journal of Molecular Liquids, 219 (2016) 624-630.

DOI: 10.1016/j.molliq.2016.03.078

Google Scholar

[17] W.A. Khan, O.D. Makinde, Z.H. Khan, Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat, Int. J. Heat Mass Transfer, 96 (2016) 525-534.

DOI: 10.1016/j.ijheatmasstransfer.2016.01.052

Google Scholar

[18] J. Buongiorno, Convective transports in nanofluids, J. Heat Transfer, 128 (2006) 240-250.

Google Scholar

[19] K. Vajravelu, K. V. Prasad, L. Jinho, L. Changhoon, I. Pop, Robert A. Van Gorder, Convective heat transfer in the flow of Ag-water and Cu-water nanofluids over a stretching surface, Int. J. Therm. Sci., 50 (2011) 843-851.

DOI: 10.1016/j.ijthermalsci.2011.01.008

Google Scholar

[20] B.C. Sakiadis, Boundary layer behaviors on continuous solid surface. AIChE J., 7(2) (1961) 221–225.

DOI: 10.1002/aic.690070211

Google Scholar

[21] LJ. Crane. Flow past a stretching plate. Z Angew Math Phys., 21 (1970) 645–647.

Google Scholar

[22] K.V. Prasad, Subhas Abel, P.S. Datti, Diffusion of chemically reactive species of a non-Newtonian fluid immersed in a porous medium over a stretching sheet, International Journal of Non-Linear Mechanics, 38 (2003) 651-657.

DOI: 10.1016/s0020-7462(01)00122-6

Google Scholar

[23] S. Mukhopadhyay, G.C. Layek, Sk.A. Samad, Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity, International Journal of Heat and Mass Transfer, 48 (2005) 4460-4466.

DOI: 10.1016/j.ijheatmasstransfer.2005.05.027

Google Scholar

[24] C.S.K. Raju, N. Sandeep, C. Sulochana, V. Sugunamma, M. Jayachandra Babu, Radiation, Inclined magnetic field and cross-diffusion effects on flow over a stretching surface, Journal of the Nigerian Mathematical Society, 34 (2015) 169-180.

DOI: 10.1016/j.jnnms.2015.02.003

Google Scholar

[25] F. Mabood, W.A. Khan, A.I.M. Ismail, MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study, Journal of Magnetism and Magnetic Materials, 374 (2015) 569-576.

DOI: 10.1016/j.jmmm.2014.09.013

Google Scholar

[26] Sandeep Naramgari, Sulochana Chalavadi, Animasaun Isaac Lare, Stagnation-point flow of a Jeffery nano fluid over a stretching surface with induced magnetic field and chemical reaction, International Journal of Engineering Research in Africa, 20 (2016).

DOI: 10.4028/www.scientific.net/jera.20.93

Google Scholar

[27] R. Cortell, Effect of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet, Physics Letters A, 372 (2008) 631-636.

DOI: 10.1016/j.physleta.2007.08.005

Google Scholar

[28] C.H. Chen, Effect of viscous dissipation on heat transfer in a non-Newtonian liquid film over an unsteady stretching sheet, J. Non-Newtonian Fluid Mech., 135 (2006) 128–135.

DOI: 10.1016/j.jnnfm.2006.01.009

Google Scholar

[29] R.R. Kairi, P.V.S.N. Murthy, Effect of viscous dissipation on natural convection heat and mass transfer from vertical cone in a non-Newtonian fluid saturated non-Darcy porous medium, Applied Mathematics and Computation, 217 (2011) 8100-8114.

DOI: 10.1016/j.amc.2011.03.013

Google Scholar

[30] M. Sheikholeslami, S. Abelman, D.D. Ganji, Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation, International Journal of Heat and Mass Transfer, 79 (2014) 212-222.

DOI: 10.1016/j.ijheatmasstransfer.2014.08.004

Google Scholar

[31] N. Sandeep, C. Sulochana, Dual solutions for unsteady mixed convection flow of MHD micropolar fluid over a stretching/shrinking sheet with non-uniform heat source/sink, Engineering Science and Technology, an International Journal, 18 (2015).

DOI: 10.1016/j.jestch.2015.05.006

Google Scholar

[32] R.U. Haq, D. Rajotia, N.F.M. Noor, Thermophysical effects of water driven copper nanoparticles on MHD axisymmetric permeable shrinking sheet: Dual-nature study, European Physical Journal of Engineering, 39 (2016).

DOI: 10.1140/epje/i2016-16033-6

Google Scholar

[33] C. Sulochana, G.P. Ashwinkumar, N. Sandeep, Numerical investigation of chemically reacting MHD flow due to a rotating cone with thermophoresis and Brownian motion, Int. J. Adv. Sci. Technol. 86 (2016) 61–74.

DOI: 10.14257/ijast.2016.86.06

Google Scholar

[34] I. L. Animasaun, N. Sandeep, Buoyancy induced model for theflow of 36 nm alumina-water nanofluidalong upper horizontal surface of a paraboloid of revolution with variablethermal conductivity and viscosity, Powder Technology. 301 (2016) 858 – 867.

DOI: 10.1016/j.powtec.2016.07.023

Google Scholar

[35] O.D. Makinde, W.A. Khan, J.R. Culham, MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer, Int. J. Heat Mass Transfer, 93 (2016) 595-604.

DOI: 10.1016/j.ijheatmasstransfer.2015.10.050

Google Scholar

[36] C. Sulochana, G.P. Ashwinkumar, N. Sandeep, Similarity solution of 3D Casson nanofluid flow over a stretching sheet with convective boundary conditions, J. Niger. Math. Soc. 35 (2016) 128–141.

DOI: 10.1016/j.jnnms.2016.01.001

Google Scholar

[37] O.D. Makinde, I.L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. Journal of Molecular Liquids. 221 (2016).

DOI: 10.1016/j.molliq.2016.06.047

Google Scholar