[1]
C.S.K. Raju, N. Sandeep, Unsteady three-dimensional flow of Casson-Carreau fluids past a stretching surface, Alexandria Engineering Journal, 55 (2016) 1115-1126.
DOI: 10.1016/j.aej.2016.03.023
Google Scholar
[2]
A.K. Abdul Hakeem, P. Renuka, N. Vishnu Ganesh, R. Kalaivanan, B. Ganga, Influence of inclined Lorentz forces on boundary layer flow of Casson fluid over an impermeable stretching sheet with heat transfer, Journal of Magnetism and Magnetic Materials, 401 (2016).
DOI: 10.1016/j.jmmm.2015.10.026
Google Scholar
[3]
C. Sulochana, G.P. Ashwinkumar, N. Sandeep, Transpiration effect on stagnation-point flow of a Carreau nanofluid in the presence of thermophoresis and Brownian motion, Alexandria Engineering Journal, 55 (2016) 1151-1157.
DOI: 10.1016/j.aej.2016.03.031
Google Scholar
[4]
T. Hayat, Z. Abbas, M. Sajid, Series solution for the upper-convected Maxwell fluid over a porous stretching plate, Physics Letters A, 358 (2006) 396-403.
DOI: 10.1016/j.physleta.2006.04.117
Google Scholar
[5]
M. Subhas Abel, M.M. Nandeppanavar, Heat transfer in MHD viscoelastic boundary layer flow over a stretching sheet with non-uniform heat source/sink, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009) 2120-2131.
DOI: 10.1016/j.cnsns.2008.06.004
Google Scholar
[6]
T. Hayat. Z. Iqbal, M. Mustafa, A. Alsaedi, Momentum and heat transfer of an upper convected Maxwell fluid over a moving surface with convective boundary conditions, Nuclear Engineering and Design, 252 (2012) 242-247.
DOI: 10.1016/j.nucengdes.2012.07.012
Google Scholar
[7]
S. Nadeem, R. Ul, Z.H. Khan, Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles, Journal of the Taiwan Institute of Chemical Engineers, 45(1) (2014) 121-126.
DOI: 10.1016/j.jtice.2013.04.006
Google Scholar
[8]
G.K. Ramesh, B.J. Gireesha, Influence of heat source/sink on a Maxwell fluid over a stretching surface with convective boundary condition in the presence of nanoparticles, Ain Shams Engineering Journal, 5(2) (2014) 991-998.
DOI: 10.1016/j.asej.2014.04.003
Google Scholar
[9]
W.A. Khan, R. Culham, O.D. Makinde, Hydromagnetic Blasius flow of power-law nanofluids over a convectively heated verticle plate. Can. J. Chem. Eng., 93 (10) (2015) 1830-1837.
DOI: 10.1002/cjce.22280
Google Scholar
[10]
A.A. Afify, Nasser S. Elgazery, Effect of a chemical reaction on magnetohydrodynamic boundary layer flow of a Maxwell fluid over a stretching sheet with nanoparticles, Particuology, 29 (2016) 154-161.
DOI: 10.1016/j.partic.2016.05.003
Google Scholar
[11]
C.S.K. Raju, N. Sandeep, S. Saleem, Effects of induced magnetic field and homogeneous-heterogeneous reactions on stagnation flow of a Casson fluid, Engineering Science and Technology, an International Journal, 19(2) (2016) 875-887.
DOI: 10.1016/j.jestch.2015.12.004
Google Scholar
[12]
S.U.S. Choi, Enhancing thermal Conductivity of fluids with nano particles, The proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, ASME, San Francisco (1995) 66, 99-105.
Google Scholar
[13]
X. Wang and Arun S. Mujumdar, Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Sciences 46 (2007) 1-19.
Google Scholar
[14]
P. Rana, R. Bhargava, Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: a numerical study, Commun. Nonlinear Sci. Numer. Simul., 17 (2012) 212-226.
DOI: 10.1016/j.cnsns.2011.05.009
Google Scholar
[15]
N. Sandeep, C. Sulochana, B. Rushi Kumar, MHD boundary layer flow and heat transfer past a stretching/shrinking sheet in a nanofluid, Journal of nanofluids, 4(4) (2015) 1-6.
DOI: 10.1166/jon.2015.1181
Google Scholar
[16]
O.D. Makinde, F. Mabood, W.A. Khan, M.S. Tshehla, MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat. Journal of Molecular Liquids, 219 (2016) 624-630.
DOI: 10.1016/j.molliq.2016.03.078
Google Scholar
[17]
W.A. Khan, O.D. Makinde, Z.H. Khan, Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat, Int. J. Heat Mass Transfer, 96 (2016) 525-534.
DOI: 10.1016/j.ijheatmasstransfer.2016.01.052
Google Scholar
[18]
J. Buongiorno, Convective transports in nanofluids, J. Heat Transfer, 128 (2006) 240-250.
Google Scholar
[19]
K. Vajravelu, K. V. Prasad, L. Jinho, L. Changhoon, I. Pop, Robert A. Van Gorder, Convective heat transfer in the flow of Ag-water and Cu-water nanofluids over a stretching surface, Int. J. Therm. Sci., 50 (2011) 843-851.
DOI: 10.1016/j.ijthermalsci.2011.01.008
Google Scholar
[20]
B.C. Sakiadis, Boundary layer behaviors on continuous solid surface. AIChE J., 7(2) (1961) 221–225.
DOI: 10.1002/aic.690070211
Google Scholar
[21]
LJ. Crane. Flow past a stretching plate. Z Angew Math Phys., 21 (1970) 645–647.
Google Scholar
[22]
K.V. Prasad, Subhas Abel, P.S. Datti, Diffusion of chemically reactive species of a non-Newtonian fluid immersed in a porous medium over a stretching sheet, International Journal of Non-Linear Mechanics, 38 (2003) 651-657.
DOI: 10.1016/s0020-7462(01)00122-6
Google Scholar
[23]
S. Mukhopadhyay, G.C. Layek, Sk.A. Samad, Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity, International Journal of Heat and Mass Transfer, 48 (2005) 4460-4466.
DOI: 10.1016/j.ijheatmasstransfer.2005.05.027
Google Scholar
[24]
C.S.K. Raju, N. Sandeep, C. Sulochana, V. Sugunamma, M. Jayachandra Babu, Radiation, Inclined magnetic field and cross-diffusion effects on flow over a stretching surface, Journal of the Nigerian Mathematical Society, 34 (2015) 169-180.
DOI: 10.1016/j.jnnms.2015.02.003
Google Scholar
[25]
F. Mabood, W.A. Khan, A.I.M. Ismail, MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study, Journal of Magnetism and Magnetic Materials, 374 (2015) 569-576.
DOI: 10.1016/j.jmmm.2014.09.013
Google Scholar
[26]
Sandeep Naramgari, Sulochana Chalavadi, Animasaun Isaac Lare, Stagnation-point flow of a Jeffery nano fluid over a stretching surface with induced magnetic field and chemical reaction, International Journal of Engineering Research in Africa, 20 (2016).
DOI: 10.4028/www.scientific.net/jera.20.93
Google Scholar
[27]
R. Cortell, Effect of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet, Physics Letters A, 372 (2008) 631-636.
DOI: 10.1016/j.physleta.2007.08.005
Google Scholar
[28]
C.H. Chen, Effect of viscous dissipation on heat transfer in a non-Newtonian liquid film over an unsteady stretching sheet, J. Non-Newtonian Fluid Mech., 135 (2006) 128–135.
DOI: 10.1016/j.jnnfm.2006.01.009
Google Scholar
[29]
R.R. Kairi, P.V.S.N. Murthy, Effect of viscous dissipation on natural convection heat and mass transfer from vertical cone in a non-Newtonian fluid saturated non-Darcy porous medium, Applied Mathematics and Computation, 217 (2011) 8100-8114.
DOI: 10.1016/j.amc.2011.03.013
Google Scholar
[30]
M. Sheikholeslami, S. Abelman, D.D. Ganji, Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation, International Journal of Heat and Mass Transfer, 79 (2014) 212-222.
DOI: 10.1016/j.ijheatmasstransfer.2014.08.004
Google Scholar
[31]
N. Sandeep, C. Sulochana, Dual solutions for unsteady mixed convection flow of MHD micropolar fluid over a stretching/shrinking sheet with non-uniform heat source/sink, Engineering Science and Technology, an International Journal, 18 (2015).
DOI: 10.1016/j.jestch.2015.05.006
Google Scholar
[32]
R.U. Haq, D. Rajotia, N.F.M. Noor, Thermophysical effects of water driven copper nanoparticles on MHD axisymmetric permeable shrinking sheet: Dual-nature study, European Physical Journal of Engineering, 39 (2016).
DOI: 10.1140/epje/i2016-16033-6
Google Scholar
[33]
C. Sulochana, G.P. Ashwinkumar, N. Sandeep, Numerical investigation of chemically reacting MHD flow due to a rotating cone with thermophoresis and Brownian motion, Int. J. Adv. Sci. Technol. 86 (2016) 61–74.
DOI: 10.14257/ijast.2016.86.06
Google Scholar
[34]
I. L. Animasaun, N. Sandeep, Buoyancy induced model for theflow of 36 nm alumina-water nanofluidalong upper horizontal surface of a paraboloid of revolution with variablethermal conductivity and viscosity, Powder Technology. 301 (2016) 858 – 867.
DOI: 10.1016/j.powtec.2016.07.023
Google Scholar
[35]
O.D. Makinde, W.A. Khan, J.R. Culham, MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer, Int. J. Heat Mass Transfer, 93 (2016) 595-604.
DOI: 10.1016/j.ijheatmasstransfer.2015.10.050
Google Scholar
[36]
C. Sulochana, G.P. Ashwinkumar, N. Sandeep, Similarity solution of 3D Casson nanofluid flow over a stretching sheet with convective boundary conditions, J. Niger. Math. Soc. 35 (2016) 128–141.
DOI: 10.1016/j.jnnms.2016.01.001
Google Scholar
[37]
O.D. Makinde, I.L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. Journal of Molecular Liquids. 221 (2016).
DOI: 10.1016/j.molliq.2016.06.047
Google Scholar