[1]
J. Sarkar, P. Ghosh, A. Adil, A review on hybrid nanofluids: recent research, development and applications, Renew Sustain Energy Rev. 43 (2015) 164-177.
DOI: 10.1016/j.rser.2014.11.023
Google Scholar
[2]
B. Takabi, H. Shokouhmand, Effects of AlO - Cu / water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime, Int. J. Modern Phy. C 26(1) (2015), Paper 1550047.
DOI: 10.1142/s0129183115500473
Google Scholar
[3]
W.S. Han, S.H. Rhi, Thermal characteristics of grooved heat pipe with hybrid nanofluids, Therm. Sci. 15 (2011) 195–206.
DOI: 10.2298/tsci100209056h
Google Scholar
[4]
P. Selvakumar, S. Suresh, Use of AlO–Cu / water hybrid nanofluid in an electronic heat sink, IEEE Trans Compon Packag Manuf. Technol. 2 (2012) 1600–1607.
DOI: 10.1109/tcpmt.2012.2211018
Google Scholar
[5]
S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Effect of AlO-Cu / water hybrid nanofluid in heat transfer, Exp. Therm. Fluid Sci. 38(2012) 54–60.
DOI: 10.1016/j.expthermflusci.2011.11.007
Google Scholar
[6]
R. Nimmagadda, K. Venkatasubbaiah, Conjugate heat transfer analysis of micro channel using novel hybrid nanofluids (AlO + Ag/Water), Eur. J. Mech. B Fluids 52 (2015) 19–27.
Google Scholar
[7]
H.R. Allahyar, F. Hormozi, N. B. Zare, Experimental investigation on the thermal performance of a coiled heat exchanger using a new hybrid nanofluid, Exp. Therm. Fluid Sci. 76 (2016) 324-329.
DOI: 10.1016/j.expthermflusci.2016.03.027
Google Scholar
[8]
D. Huang, Z. Wu, B. Sunden, Effects of hybrid nanofluid mixture in plate heat exchangers, Exp. Therm. Fluid Sci. 72(2016)190-196.
DOI: 10.1016/j.expthermflusci.2015.11.009
Google Scholar
[9]
B. Takabi, A. M. Gheitaghy, P. Tazraei, Hybrid water-based suspension of AlO and Cu nanoparticles on laminar convection effectiveness, J. Thermophys. Heat Transf. 30(3) (2016) 523-532.
DOI: 10.2514/1.t4756
Google Scholar
[10]
S. S. U. Devi, S.P. A. Devi, Numerical investigation of three-dimensional hybrid Cu-AlO/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating, Can. J. Phys. 94(5) (2016) 490-496.
DOI: 10.1139/cjp-2015-0799
Google Scholar
[11]
A. Bejan, Second law analysis in heat transfer, Energy Int. J. 5 (1980) 721-732.
Google Scholar
[12]
A. Bejan, Entropy Generation Through Heat and Fluid Flow, Wiley, Canada, (1994).
Google Scholar
[13]
A. Bejan, Second-law analysis in heat transfer and thermal design, Adv. Heat Transf. 15 (1982) 1–58.
DOI: 10.1016/s0065-2717(08)70172-2
Google Scholar
[14]
A. Bejan, Entropy Generation Minimization; CRC Press: New York, NY, USA, (1996).
Google Scholar
[15]
A. Bejan, A study of entropy generation in fundamental convective heat transfer, J. Heat Transf. 101(1979) 718-725.
DOI: 10.1115/1.3451063
Google Scholar
[16]
A. Bejan, Tsatsaronis G. and Moran M., Thermal Design and Optimization; Wiley: New York, NY, USA, (1996).
Google Scholar
[17]
V.S. Arpaci, A. Selamet, Entropy production in flames, Combust. Flame 73 (1988) 254-259.
DOI: 10.1016/0010-2180(88)90022-3
Google Scholar
[18]
V.S. Arpaci, A. Selamet, Entropy production in boundary layers, J. Thermophys. Heat Tr. 4(1990) 404-407.
Google Scholar
[19]
V.S. Arpaci, Radiative entropy production-Heat lost to entropy, Adv. Heat Transf. 21(1991) 239-276.
DOI: 10.1016/s0065-2717(08)70337-x
Google Scholar
[20]
V.S. Arpaci, Thermal deformation: From thermodynamics to heat transfer, J. Heat Transf. 123 (2001) 821-826.
Google Scholar
[21]
V.S. Arpaci, A. Esmaeeli, Radiative deformation, J. Appl. Phys. 87(2000) 3093-3100.
Google Scholar
[22]
M. Magherbi, H. Abbassi, A. Ben Brahim, Entropy generation at the onset of natural convection, Int. J. Heat Mass Transf. 46 (2003) 3441–3450.
DOI: 10.1016/s0017-9310(03)00133-9
Google Scholar
[23]
M. Magherbi, H. Abbassi, N. Hidouri, A. Ben Brahim, Second law analysis in convective heat and mass transfer, Entropy 8(2006) 1–17.
DOI: 10.3390/e8010001
Google Scholar
[24]
H. Abbassi, M. Magherbi, A. Ben Brahim, Entropy generation in Poiseuille-Benard channel flow, Int. J. Therm. Sci., 42(2003), 1081-1088.
DOI: 10.1016/s1290-0729(03)00095-4
Google Scholar
[25]
L. B. Erbay, M.S.E. BirsenSülüþ, M.M. Yalçýn, Entropy generation during fluid flow between two parallel plates with moving bottom plate, Entropy 5 (2003) 506-518.
DOI: 10.3390/e5050506
Google Scholar
[26]
S. Salas, S. Cuevas, M.L. Haro, Entropy generation analysis of magnetohydrodynamic inductiondevices, J. Phys. D: Appl. Phys. 32(1999) 2605-2608.
DOI: 10.1088/0022-3727/32/20/304
Google Scholar
[27]
S. Mahmud, S.H. Tasnim, H. A. A. Mamun, Thermodynamics analysis of mixed convection in a channel with transverse hydromagnetic effect, Int. J Therm. Sci. 42(2003) 731-740.
DOI: 10.1016/s1290-0729(03)00040-1
Google Scholar
[28]
S. Mahmud, R.A. Fraser, Flow, thermal and entropy generation characteristic inside a porous channel with viscous dissipation, Int. J. Therm. Sci. 44(2005), 21–32.
DOI: 10.1016/j.ijthermalsci.2004.05.001
Google Scholar
[29]
D.S. Chauhan, V. Kumar, Heat transfer and entropy generation during compressible fluid flow in a channel partially filled with porous medium, Int. J. Energ. Tech. 3(2011) 1-10.
Google Scholar
[30]
S.H. Tasnim, S. Mahmud, M.A.H. Mamun, Entropy generation in a porous channel with hydromagnetic effects. Exergy 2(2002) 300-308.
DOI: 10.1016/s1164-0235(02)00065-1
Google Scholar
[31]
A.S. Eegunjobi, O.D. Makinde, Combined effect of buoyancy force and navier slip on entropy generation in a vertical porous channel. Entropy 14(2012) 1028-1044.
DOI: 10.3390/e14061028
Google Scholar
[32]
O.D. Makinde, E. Osalusi, Second law analysis of laminar flow in a channel filled with saturated porous media, Entropy 7 (2) (2005) 148-160.
DOI: 10.3390/e7020148
Google Scholar
[33]
O.D. Makinde, R. L. Maserumule, Thermal criticality and entropy analysis for a variable viscosity Couette flow, Phys. Scr. 78 (2008), 1-6.
DOI: 10.1088/0031-8949/78/01/015402
Google Scholar
[34]
O.D. Makinde, E. Osalusi, Entropy generation in a liquid film falling along an incline porous heated plate, Mech. Res. Commun. 33 (2006) 692-698.
DOI: 10.1016/j.mechrescom.2005.06.010
Google Scholar
[35]
D. Cimpean, I. Pop, Parametric analysis of entropy generation in a channel filled with a porous medium, Recent Researches in Appl. Comput. Math., WSEAS ICACM, 2011, 54-59.
Google Scholar
[36]
D. Cimpean, I. Pop, A study of entropy generation minimization in an inclined channel, WSEAS Transactions on Heat and Mass Transf. 6(2)(2011) 31-40.
Google Scholar
[37]
A. E. Jery, N. Hidouri, M. Magherbi, A. Ben Brahim, Effect of an external oriented magnetic field on entropy generation in natural convection, Entropy 12(2010) 1391-1417.
DOI: 10.3390/e12061391
Google Scholar
[38]
R. Dwivedi, S. P. Singh, B.B. Singh, Analysis of incompressible viscous laminar flow through a channel filled with porous media. Int. J. Stab. Fluid Mech. 1(1)(2010) 127-134.
Google Scholar
[39]
O.D. Makinde, T. Chinyoka, Numerical investigation of buoyancy effects on hydromagnetic unsteady flow through a porous channel with suction / injection, J. Mech. Sci. Tech. 27 (5) (2013), 1557-1568.
DOI: 10.1007/s12206-013-0221-9
Google Scholar
[40]
S. Das, R. N. Jana, Entropy generation in MHD porous channel flow under constant pressure gradient, Appl. Math. Phys. 1(3) (2013) 78-89.
Google Scholar
[41]
S. Das, R. N. Jana, Entropy generation due to MHD flow in a porous channel with Navier slip. Ain Shams Eng. J. 5 (2014) 575-584.
DOI: 10.1016/j.asej.2013.11.005
Google Scholar
[42]
A. Ahammed, L.G. Asirvatham, S. Wongwises, Entropy generation analysis of graphene-alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler, Int. J. Heat Mass Transf. 103 (2016) 1084-1097.
DOI: 10.1016/j.ijheatmasstransfer.2016.07.070
Google Scholar
[43]
L. C. Woods, Thermodynamics of Fluid Systems, Oxford University Press, Oxford, UK, (1975).
Google Scholar
[44]
D. Cimpean, N. Lungu, I. Pop, A problem of entropy generation in a channel filled with a porous medium, Creative Math. Inf. 17(2008) 357-362.
Google Scholar
[45]
H. F. Öztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat and Fluid Flow 29(2008) 1326-1336.
DOI: 10.1016/j.ijheatfluidflow.2008.04.009
Google Scholar