MHD Flow of Cu-Al2O3/Water Hybrid Nanofluid in Porous Channel: Analysis of Entropy Generation

Article Preview

Abstract:

In this investigation, a magnetohydrodynamic (MHD) flow of AlO /water nanofluid and Cu-AlO /water hybrid nanofluid through a porous channel is analyzed in the presence of a transverse magnetic field. An exact solution of the governing equations has been obtained in closed form. The entropy generation number and the Bejan number are also obtained. The influences of each of the governing parameters on velocity, temperature, entropy generation and Bejan number are displayed graphically and the physical aspects are discussed. In addition, a comparison of the heat transfer enhancement level due to the suspension of AlO and Cu nanoparticles in water as regular nanofluids and as hybrid Cu-AlO /water nanofluid is reported.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

42-61

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Sarkar, P. Ghosh, A. Adil, A review on hybrid nanofluids: recent research, development and applications, Renew Sustain Energy Rev. 43 (2015) 164-177.

DOI: 10.1016/j.rser.2014.11.023

Google Scholar

[2] B. Takabi, H. Shokouhmand, Effects of AlO - Cu / water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime, Int. J. Modern Phy. C 26(1) (2015), Paper 1550047.

DOI: 10.1142/s0129183115500473

Google Scholar

[3] W.S. Han, S.H. Rhi, Thermal characteristics of grooved heat pipe with hybrid nanofluids, Therm. Sci. 15 (2011) 195–206.

DOI: 10.2298/tsci100209056h

Google Scholar

[4] P. Selvakumar, S. Suresh, Use of AlO–Cu / water hybrid nanofluid in an electronic heat sink, IEEE Trans Compon Packag Manuf. Technol. 2 (2012) 1600–1607.

DOI: 10.1109/tcpmt.2012.2211018

Google Scholar

[5] S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Effect of AlO-Cu / water hybrid nanofluid in heat transfer, Exp. Therm. Fluid Sci. 38(2012) 54–60.

DOI: 10.1016/j.expthermflusci.2011.11.007

Google Scholar

[6] R. Nimmagadda, K. Venkatasubbaiah, Conjugate heat transfer analysis of micro channel using novel hybrid nanofluids (AlO + Ag/Water), Eur. J. Mech. B Fluids 52 (2015) 19–27.

Google Scholar

[7] H.R. Allahyar, F. Hormozi, N. B. Zare, Experimental investigation on the thermal performance of a coiled heat exchanger using a new hybrid nanofluid, Exp. Therm. Fluid Sci. 76 (2016) 324-329.

DOI: 10.1016/j.expthermflusci.2016.03.027

Google Scholar

[8] D. Huang, Z. Wu, B. Sunden, Effects of hybrid nanofluid mixture in plate heat exchangers, Exp. Therm. Fluid Sci. 72(2016)190-196.

DOI: 10.1016/j.expthermflusci.2015.11.009

Google Scholar

[9] B. Takabi, A. M. Gheitaghy, P. Tazraei, Hybrid water-based suspension of AlO and Cu nanoparticles on laminar convection effectiveness, J. Thermophys. Heat Transf. 30(3) (2016) 523-532.

DOI: 10.2514/1.t4756

Google Scholar

[10] S. S. U. Devi, S.P. A. Devi, Numerical investigation of three-dimensional hybrid Cu-AlO/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating, Can. J. Phys. 94(5) (2016) 490-496.

DOI: 10.1139/cjp-2015-0799

Google Scholar

[11] A. Bejan, Second law analysis in heat transfer, Energy Int. J. 5 (1980) 721-732.

Google Scholar

[12] A. Bejan, Entropy Generation Through Heat and Fluid Flow, Wiley, Canada, (1994).

Google Scholar

[13] A. Bejan, Second-law analysis in heat transfer and thermal design, Adv. Heat Transf. 15 (1982) 1–58.

DOI: 10.1016/s0065-2717(08)70172-2

Google Scholar

[14] A. Bejan, Entropy Generation Minimization; CRC Press: New York, NY, USA, (1996).

Google Scholar

[15] A. Bejan, A study of entropy generation in fundamental convective heat transfer, J. Heat Transf. 101(1979) 718-725.

DOI: 10.1115/1.3451063

Google Scholar

[16] A. Bejan, Tsatsaronis G. and Moran M., Thermal Design and Optimization; Wiley: New York, NY, USA, (1996).

Google Scholar

[17] V.S. Arpaci, A. Selamet, Entropy production in flames, Combust. Flame 73 (1988) 254-259.

DOI: 10.1016/0010-2180(88)90022-3

Google Scholar

[18] V.S. Arpaci, A. Selamet, Entropy production in boundary layers, J. Thermophys. Heat Tr. 4(1990) 404-407.

Google Scholar

[19] V.S. Arpaci, Radiative entropy production-Heat lost to entropy, Adv. Heat Transf. 21(1991) 239-276.

DOI: 10.1016/s0065-2717(08)70337-x

Google Scholar

[20] V.S. Arpaci, Thermal deformation: From thermodynamics to heat transfer, J. Heat Transf. 123 (2001) 821-826.

Google Scholar

[21] V.S. Arpaci, A. Esmaeeli, Radiative deformation, J. Appl. Phys. 87(2000) 3093-3100.

Google Scholar

[22] M. Magherbi, H. Abbassi, A. Ben Brahim, Entropy generation at the onset of natural convection, Int. J. Heat Mass Transf. 46 (2003) 3441–3450.

DOI: 10.1016/s0017-9310(03)00133-9

Google Scholar

[23] M. Magherbi, H. Abbassi, N. Hidouri, A. Ben Brahim, Second law analysis in convective heat and mass transfer, Entropy 8(2006) 1–17.

DOI: 10.3390/e8010001

Google Scholar

[24] H. Abbassi, M. Magherbi, A. Ben Brahim, Entropy generation in Poiseuille-Benard channel flow, Int. J. Therm. Sci., 42(2003), 1081-1088.

DOI: 10.1016/s1290-0729(03)00095-4

Google Scholar

[25] L. B. Erbay, M.S.E. BirsenSülüþ, M.M. Yalçýn, Entropy generation during fluid flow between two parallel plates with moving bottom plate, Entropy 5 (2003) 506-518.

DOI: 10.3390/e5050506

Google Scholar

[26] S. Salas, S. Cuevas, M.L. Haro, Entropy generation analysis of magnetohydrodynamic inductiondevices, J. Phys. D: Appl. Phys. 32(1999) 2605-2608.

DOI: 10.1088/0022-3727/32/20/304

Google Scholar

[27] S. Mahmud, S.H. Tasnim, H. A. A. Mamun, Thermodynamics analysis of mixed convection in a channel with transverse hydromagnetic effect, Int. J Therm. Sci. 42(2003) 731-740.

DOI: 10.1016/s1290-0729(03)00040-1

Google Scholar

[28] S. Mahmud, R.A. Fraser, Flow, thermal and entropy generation characteristic inside a porous channel with viscous dissipation, Int. J. Therm. Sci. 44(2005), 21–32.

DOI: 10.1016/j.ijthermalsci.2004.05.001

Google Scholar

[29] D.S. Chauhan, V. Kumar, Heat transfer and entropy generation during compressible fluid flow in a channel partially filled with porous medium, Int. J. Energ. Tech. 3(2011) 1-10.

Google Scholar

[30] S.H. Tasnim, S. Mahmud, M.A.H. Mamun, Entropy generation in a porous channel with hydromagnetic effects. Exergy 2(2002) 300-308.

DOI: 10.1016/s1164-0235(02)00065-1

Google Scholar

[31] A.S. Eegunjobi, O.D. Makinde, Combined effect of buoyancy force and navier slip on entropy generation in a vertical porous channel. Entropy 14(2012) 1028-1044.

DOI: 10.3390/e14061028

Google Scholar

[32] O.D. Makinde, E. Osalusi, Second law analysis of laminar flow in a channel filled with saturated porous media, Entropy 7 (2) (2005) 148-160.

DOI: 10.3390/e7020148

Google Scholar

[33] O.D. Makinde, R. L. Maserumule, Thermal criticality and entropy analysis for a variable viscosity Couette flow, Phys. Scr. 78 (2008), 1-6.

DOI: 10.1088/0031-8949/78/01/015402

Google Scholar

[34] O.D. Makinde, E. Osalusi, Entropy generation in a liquid film falling along an incline porous heated plate, Mech. Res. Commun. 33 (2006) 692-698.

DOI: 10.1016/j.mechrescom.2005.06.010

Google Scholar

[35] D. Cimpean, I. Pop, Parametric analysis of entropy generation in a channel filled with a porous medium, Recent Researches in Appl. Comput. Math., WSEAS ICACM, 2011, 54-59.

Google Scholar

[36] D. Cimpean, I. Pop, A study of entropy generation minimization in an inclined channel, WSEAS Transactions on Heat and Mass Transf. 6(2)(2011) 31-40.

Google Scholar

[37] A. E. Jery, N. Hidouri, M. Magherbi, A. Ben Brahim, Effect of an external oriented magnetic field on entropy generation in natural convection, Entropy 12(2010) 1391-1417.

DOI: 10.3390/e12061391

Google Scholar

[38] R. Dwivedi, S. P. Singh, B.B. Singh, Analysis of incompressible viscous laminar flow through a channel filled with porous media. Int. J. Stab. Fluid Mech. 1(1)(2010) 127-134.

Google Scholar

[39] O.D. Makinde, T. Chinyoka, Numerical investigation of buoyancy effects on hydromagnetic unsteady flow through a porous channel with suction / injection, J. Mech. Sci. Tech. 27 (5) (2013), 1557-1568.

DOI: 10.1007/s12206-013-0221-9

Google Scholar

[40] S. Das, R. N. Jana, Entropy generation in MHD porous channel flow under constant pressure gradient, Appl. Math. Phys. 1(3) (2013) 78-89.

Google Scholar

[41] S. Das, R. N. Jana, Entropy generation due to MHD flow in a porous channel with Navier slip. Ain Shams Eng. J. 5 (2014) 575-584.

DOI: 10.1016/j.asej.2013.11.005

Google Scholar

[42] A. Ahammed, L.G. Asirvatham, S. Wongwises, Entropy generation analysis of graphene-alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler, Int. J. Heat Mass Transf. 103 (2016) 1084-1097.

DOI: 10.1016/j.ijheatmasstransfer.2016.07.070

Google Scholar

[43] L. C. Woods, Thermodynamics of Fluid Systems, Oxford University Press, Oxford, UK, (1975).

Google Scholar

[44] D. Cimpean, N. Lungu, I. Pop, A problem of entropy generation in a channel filled with a porous medium, Creative Math. Inf. 17(2008) 357-362.

Google Scholar

[45] H. F. Öztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat and Fluid Flow 29(2008) 1326-1336.

DOI: 10.1016/j.ijheatfluidflow.2008.04.009

Google Scholar