Magneto-Nanofluid Dynamics in Convergent-Divergent Channel and its Inherent Irreversibility

Article Preview

Abstract:

The effects of Cu-nanoparticles on the entropy generation of steady magnetohydrodynamic incompressible flow with viscous dissipation and Joule heating through convergent-divergent channel are analysed in this paper. The basic nonlinear partial differential equations are transformed into a system of coupled ordinary differential equations using suitable transformations which are then solved using power series with Hermite- Padé approximation technique. The velocity profiles, temperature distributions, entropy generation rates, Bejan number as well as the rate of heat transfer at the wall are presented in convergent-divergent channels for various values of nanoparticles solid volume fraction, Eckert number, Reynolds number and channel angle. A stability analysis has been performed for the shear stress which signifies that the lower solution branch is stable and physically realizable, whereas the upper solution branch is unstable. It is interesting to remark that the entropy generation of the system increases at the two walls as well as the heat transfer irreversibility is dominant there whereas the fluid friction irreversibility is dominant along the centreline of the channel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-110

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.B. Jeffery, The two-dimensional steady motion of a viscous fluid, Phil. Mag., 6 (1915) 455-46.

Google Scholar

[2] G. Hamel, Spiralförmige Bewgungen Zäher Flüssigkeiten, Jahresbericht der Deutschen Math. Vereinigung, 25 (1916) 34-60.

Google Scholar

[3] L. Rosenhead, The steady two-dimensional radial flow of viscous fluid between two inclined plane walls, Proc. R. Soc. A, 175 (1940) 436-467.

DOI: 10.1098/rspa.1940.0068

Google Scholar

[4] G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press: Cambridge, (1967).

Google Scholar

[5] R. Sadri, Channel entrance flow, Ph.D. thesis, Dept. Mechanical Engineering, University of Western Ontario, (1997).

Google Scholar

[6] M. Hamadiche, J. Scott, D. Jeandel, Temporal stability of Jeffery-Hamel flow, J. Fluid Mech., 268 (1994) 71-88.

DOI: 10.1017/s0022112094001266

Google Scholar

[7] L. E. Fraenkel, Laminar flow in symmetrical channels with slightly curved walls. I: On the Jeffery-Hamel solutions for flow between plane walls, Proc. R. Soc. London, 267 (1962) 119 - 138.

DOI: 10.1098/rspa.1962.0087

Google Scholar

[8] I. J. Sobey, P. G. Drazin, Bifurcations of two-dimensional channel flows, J. Fluid Mech., 171 (1986) 263-287.

DOI: 10.1017/s0022112086001441

Google Scholar

[9] O. D. Makinde, Steady flow in a linearly diverging asymmetrical channel, Comp. Assist. Mech. and Eng. Sci., 4 (1997) 157 - 165.

Google Scholar

[10] O. D. Makinde, P. Y. Mhone, Hermite-Pade' Approximation approach to Hydromagnetic flows in convergent-divergent channels, Appl. Math. and Comp., 181(2) (2006) 966 - 972.

DOI: 10.1016/j.amc.2006.02.018

Google Scholar

[11] O. D. Makinde, P. Y. Mhone, Temporal stability of small disturbances in MHD Jeffery-Hamel flows, Comp. & Math. with Appl., 53 (2007) 128 - 136.

DOI: 10.1016/j.camwa.2006.06.014

Google Scholar

[12] O. D. Makinde, Effect of arbitrary magnetic Reynolds number on MHD flows in convergent-divergent channels, Int. J. of Num. Meth. for Heat & Fluid Flow, 18(6) (2008) 697 - 707.

DOI: 10.1108/09615530810885524

Google Scholar

[13] S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, In Proceedings of the 1995 ASME Int. Mech. Eng. Cong. and Exposition, 66, San Francisco, USA, (1995) 99-105.

Google Scholar

[14] M. Sheikholeslami, D. D. Ganji, H. R. Ashorynejad, H. B. Rokni, Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method, Appl. Math. Mech. Engl. Ed, 33 (2012) 25-36.

DOI: 10.1007/s10483-012-1531-7

Google Scholar

[15] A. Moradi, A. Alsaedi, T. Hayat, Investigation of heat transfer and viscous dissipation effects on the Jeffery-Hamel flow of nanofluids, Thermal Sci., 19(2) (2015) 563-578.

DOI: 10.2298/tsci120410208m

Google Scholar

[16] G. S. Seth, M. K. Singh, Combined free and forced convection MHD flow in a rotating channel with perfectly conducting wall, Ind. J. Theo. Phys., 56 (2008) 203-222.

Google Scholar

[17] T. M. Syed, U. Khan, N. Ahmed, W. Sikander, A study of Velocity and Temperature slip effects on flow of water based nanofluids in Converging and Diverging Channels, Int. J. Appl. Comp. Math, (2015) DOI 10. 1007/s40819-015-0032-z.

DOI: 10.1007/s40819-015-0032-z

Google Scholar

[18] A. Bejan, Entropy-generation minimization, CRC Press, New York, (1996).

Google Scholar

[19] A. Bejan, A study of entropy generation in fundamental convective heat transfer, J. Heat Trans., 101 (1979) 718-725.

DOI: 10.1115/1.3451063

Google Scholar

[20] S. Das, S. Chakraborty, R. N. Jana, O. D. Makinde, Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition, Appl. Math. and Mech., 36(12) (2005) 1593-1610.

DOI: 10.1007/s10483-015-2003-6

Google Scholar

[21] H. Padé, Sur la représentation approchée d'une fonction pour des fractions rationnelles, Ann. Sci. École Norm. Sup. Suppl., 9 (1892) 1-93.

DOI: 10.24033/asens.378

Google Scholar

[22] C. Hermite, Sur la généralisation des fractions continues algébriques, Annali. di. Math. Pura e Applicata, 21(2) (1893) 289-308.

DOI: 10.1007/bf02420446

Google Scholar

[23] P.G. Drazin, Y. Tourigny, Numerically study of bifurcation by analytic continuation of a function defined by a power series, SIAM J. of Appl. Math., 56 (1996) 1-18.

DOI: 10.1137/s0036139994272436

Google Scholar

[24] M.A.H. Khan, High-Order Differential Approximants, J. of Comp. and Appl. Math., 149 (2002) 457-468.

Google Scholar

[25] M. M. Rahman, A New Approach to Partial Differential Approximants, M. Phil, Bangladesh University of Engineering & Technology, Dhaka, (2004).

Google Scholar

[26] L.C. Woods, Thermodynamics of Fluid Systems, Oxford University Press, Oxford, UK, (1975).

Google Scholar