Thermal Radiation Effect on 3D Slip Motion of Alcu-Water and Cu-Water Nanofluids over a Variable Thickness Stretched Surface

Article Preview

Abstract:

The current paper covers the examination of 3D nanofluid motion over a slendering expanding sheet under the influence of slip effect and thermal radiation. In this study, we considered the Cu-water and Al50Cu50-water nanofluids over a non-uniform thickness expanding sheet. With the help of similitude transformations, we changed the derived governed equations as ordinary differential equations. The mathematical outcomes determined by using Runge-Kutta and Newton’s methods. We reveal and interpret the graphs for different parameters of interest. We discussed the skin friction coefficient and reduced Nusselt number at different pertinent parameters. Results shown that the rate of heat transfer is higher in Al50Cu50-water nanofluid when compared with Cu-water nanofluid.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-154

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T Hayat, M Waqas, S A Shehzad and S Alsaed, Stretched flow of Carreau nanofluid with convective boundary condition, PRAMANA-Journal of Physics, 86 (2016) 3-17.

DOI: 10.1007/s12043-015-1137-y

Google Scholar

[2] Syahira Mansur and Anuar Ishak, The flow and heat transfer of a nanofluid past a stretching/shrinking sheet with a convective boundary condition, Abstract and Applied Analysis, Volume 2013, Article ID 350647, 9 pages, http: /dx. doi. org/10. 1155/2013/350647.

DOI: 10.1155/2013/350647

Google Scholar

[3] A. Malvandi and D. D. Ganji, Brownian motion and thermophoresis effects on slip flow of alumina/water nanofluid inside a circular microchannel in the presence of a magnetic field, International Journal of Thermal Sciences, 84 (2014) 196-206.

DOI: 10.1016/j.ijthermalsci.2014.05.013

Google Scholar

[4] Zoubida Haddad, Eiyad Abu-Nada, Hakan F. Oztop, Amina Mataoui, Natural convection in nanofluids: Are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement?, Int.J. Thermal Sciences, 57 (2012) 152-162.

DOI: 10.1016/j.ijthermalsci.2012.01.016

Google Scholar

[5] A. Noghrehabadi, Rashid Pourrajab, Mohammad Ghalambaz, Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature, International Journal of Thermal Sciences, 54 (2012).

DOI: 10.1016/j.ijthermalsci.2011.11.017

Google Scholar

[6] A. Aziz and W. A. Khan, Natural convective boundary layer flow of a nanofluid past a convectively heated vertical plate, International Journal of Thermal Sciences, 52 (2012) 83-90.

DOI: 10.1016/j.ijthermalsci.2011.10.001

Google Scholar

[7] Mahanthesh, B.; Gireesha, B. J.; Manjunatha, S.; Gorla, R. S. R., Effect of Viscous Dissipation and Joule Heating on Three-Dimensional Mixed Convection Flow of Nano Fluid Over a Non-Linear Stretching Sheet in Presence of Solar Radiation, Journal of Nanofluids, 6 (4) (2017).

DOI: 10.1166/jon.2017.1371

Google Scholar

[8] B. Mahanthesh, F. Mabood, B.J. Gireesha and R.S.R. Gorla, Effects of chemical reaction and partial slip on the three-dimensional flow of a nanofluid impinging on an exponentially stretching surface, The European Physical Journal Plus, Eur. Phys. J. Plus 132 (3) (2017).

DOI: 10.1140/epjp/i2017-11389-8

Google Scholar

[9] M. Jayachandra Babu and N. Sandeep, Three-dimensional MHD slip flow of nanofluids over a slendering stretching sheet with thermophoresis and Brownian motion effects, Advanced Powder Technology, 27 (5) (2016) 2039-(2050).

DOI: 10.1016/j.apt.2016.07.013

Google Scholar

[10] O.D. Makinde, I. L. Animasaun: Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. International Journal of Thermal Sciences, 109 (2016).

DOI: 10.1016/j.ijthermalsci.2016.06.003

Google Scholar

[11] W.A. Khan, O.D. Makinde, Z.H. Khan: MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip. International Journal of Heat and Mass Transfer 74 (2014) 285–291.

DOI: 10.1016/j.ijheatmasstransfer.2014.03.026

Google Scholar

[12] N. Sandeep, Ram Prakash Sharma, M. Ferdows, Enhanced heat transfer in unsteady magnetohydrodynamic nanofluid flow embedded with aluminum alloy nanoparticles, Journal of Molecular Liquids 234 (2017) 437–443.

DOI: 10.1016/j.molliq.2017.03.051

Google Scholar

[13] P. Mohan Krishna, N. Sandeep, Ram Prakash Sharma, Computational analysis of plane and parabolic flow of MHD Carreau fluid with buoyancy and exponential heat source effects, European Physical Journal Plus, 132 (2017) 202.

DOI: 10.1140/epjp/i2017-11469-9

Google Scholar

[14] N. Sandeep, Effect of Aligned Magnetic field on liquid thin film flow of magnetic-nanofluid embedded with graphene nanoparticles, Advanced Powder Technology, 28 (2017) 865–875.

DOI: 10.1016/j.apt.2016.12.012

Google Scholar

[15] M. Jayachandra Babu, N. Sandeep, M.E. Ali, Abdullah O. Nuhait, Magnetohydrodynamic dissipative flow across the slendering stretching sheet with temperature dependent variable viscosity, Results in Physics 7 (2017) 1801-1807.

DOI: 10.1016/j.rinp.2017.05.018

Google Scholar

[16] Fang T, Zhang J, Zhong Y. Boundary layer flow over a stretching sheet with variable thickness. Appl Math Comput, 218 (2012) 7241–7252.

DOI: 10.1016/j.amc.2011.12.094

Google Scholar

[17] Khader MM, Megahed AM. Boundary layer flow due to a stretching sheet with a variable thickness and slip velocity. J Appl Mech Tech Phys, 56 (2015) 241–247.

DOI: 10.1134/s0021894415020091

Google Scholar

[18] Anjali Devi SP, Prakash M. Slip flow effects over hydromagnetic forced convective flow over a slendering stretching sheet. J Appl Fluid Mech, 9 (2016) 683–692.

DOI: 10.18869/acadpub.jafm.68.225.24064

Google Scholar

[19] Anjali Devi SP, Prakash M., Temperature dependent viscosity and thermal conductivity effects on hydromagnetic flow over a slendering stretching sheet. J Niger Math Soc 34 (2015) 318–330.

DOI: 10.1016/j.jnnms.2015.07.002

Google Scholar

[20] S. Anjali Devi, Prakash M., Thermal radiation effects on hydromagnetic flow over a slendering stretching sheet. J Braz Soc Mech Sci Eng., 38 (2016) 423-431. http: /dx. doi. org/10. 1007/s40430-015-0315-7.

DOI: 10.1007/s40430-015-0315-7

Google Scholar

[21] W.A. Khan, O.D. Makinde, MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet, International Journal of Thermal Sciences 81 (2014) 118-124.

DOI: 10.1016/j.ijthermalsci.2014.03.009

Google Scholar

[22] W.N. Mutuku, O.D. Makinde, Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms, Computers & Fluids 95 (2014) 88-97.

DOI: 10.1016/j.compfluid.2014.02.026

Google Scholar

[23] O.D. Makinde, I.L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution, J. Mol. Liq. 221 (2016).

DOI: 10.1016/j.molliq.2016.06.047

Google Scholar

[24] P. V. S. N. Murthy, M. K. Partha and G. P. Raja Sekhar, Soret and Dufour effects in a non-Darcy porous medium, Journal of Heat Transfer, 128 (2006) 605-610.

DOI: 10.1115/1.2188512

Google Scholar

[25] M. M. Rashidi, T. Hayat, E. Erfani, S. A. Mohimanian Pour and A. H. Awatif , Simultaneous effects of partial slip and thermal-diffusion and diffusion-thermo on steady MHD convective flow due to a rotating disk, Communications in Nonlinear Science and Numerical Simulation, 16 (2011).

DOI: 10.1016/j.cnsns.2011.03.015

Google Scholar

[26] S. R. Mishra, G. C. Dash and M. Acharya, Free convective flow of visco-elastic fluid in a vertical channel with Dufour effect, World Applied Sciences Journal, 28 (2013)1275-1280.

Google Scholar

[27] J.V. Ramana Reddy, K. Anantha Kumar, V. Sugunamma, N. Sandeep, Effect of cross diffusion on MHD non-Newtonian fluids flow past a stretching sheet with non-uniform heat source/sink: A comparative study, Alexandria Engineering Journal, In Press, https: /doi. org/10. 1016/j. aej. 2017. 03. 008.

DOI: 10.1016/j.aej.2017.03.008

Google Scholar

[28] K. Pushpalatha, J.V. Ramana Reddy, V. Sugunamma, and N. Sandeep, Numerical study of chemically reacting unsteady Casson fluid flow past a stretching surface with cross diffusion and thermal radiation, Open Eng. 7 (2017) 69–76.

DOI: 10.1515/eng-2017-0013

Google Scholar

[29] M. Turkyilmazoglu, I. Pop, Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect, International Journal of Heat and Mass Transfer, 59 (2013) 167-171.

DOI: 10.1016/j.ijheatmasstransfer.2012.12.009

Google Scholar