[1]
T Hayat, M Waqas, S A Shehzad and S Alsaed, Stretched flow of Carreau nanofluid with convective boundary condition, PRAMANA-Journal of Physics, 86 (2016) 3-17.
DOI: 10.1007/s12043-015-1137-y
Google Scholar
[2]
Syahira Mansur and Anuar Ishak, The flow and heat transfer of a nanofluid past a stretching/shrinking sheet with a convective boundary condition, Abstract and Applied Analysis, Volume 2013, Article ID 350647, 9 pages, http: /dx. doi. org/10. 1155/2013/350647.
DOI: 10.1155/2013/350647
Google Scholar
[3]
A. Malvandi and D. D. Ganji, Brownian motion and thermophoresis effects on slip flow of alumina/water nanofluid inside a circular microchannel in the presence of a magnetic field, International Journal of Thermal Sciences, 84 (2014) 196-206.
DOI: 10.1016/j.ijthermalsci.2014.05.013
Google Scholar
[4]
Zoubida Haddad, Eiyad Abu-Nada, Hakan F. Oztop, Amina Mataoui, Natural convection in nanofluids: Are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement?, Int.J. Thermal Sciences, 57 (2012) 152-162.
DOI: 10.1016/j.ijthermalsci.2012.01.016
Google Scholar
[5]
A. Noghrehabadi, Rashid Pourrajab, Mohammad Ghalambaz, Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature, International Journal of Thermal Sciences, 54 (2012).
DOI: 10.1016/j.ijthermalsci.2011.11.017
Google Scholar
[6]
A. Aziz and W. A. Khan, Natural convective boundary layer flow of a nanofluid past a convectively heated vertical plate, International Journal of Thermal Sciences, 52 (2012) 83-90.
DOI: 10.1016/j.ijthermalsci.2011.10.001
Google Scholar
[7]
Mahanthesh, B.; Gireesha, B. J.; Manjunatha, S.; Gorla, R. S. R., Effect of Viscous Dissipation and Joule Heating on Three-Dimensional Mixed Convection Flow of Nano Fluid Over a Non-Linear Stretching Sheet in Presence of Solar Radiation, Journal of Nanofluids, 6 (4) (2017).
DOI: 10.1166/jon.2017.1371
Google Scholar
[8]
B. Mahanthesh, F. Mabood, B.J. Gireesha and R.S.R. Gorla, Effects of chemical reaction and partial slip on the three-dimensional flow of a nanofluid impinging on an exponentially stretching surface, The European Physical Journal Plus, Eur. Phys. J. Plus 132 (3) (2017).
DOI: 10.1140/epjp/i2017-11389-8
Google Scholar
[9]
M. Jayachandra Babu and N. Sandeep, Three-dimensional MHD slip flow of nanofluids over a slendering stretching sheet with thermophoresis and Brownian motion effects, Advanced Powder Technology, 27 (5) (2016) 2039-(2050).
DOI: 10.1016/j.apt.2016.07.013
Google Scholar
[10]
O.D. Makinde, I. L. Animasaun: Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. International Journal of Thermal Sciences, 109 (2016).
DOI: 10.1016/j.ijthermalsci.2016.06.003
Google Scholar
[11]
W.A. Khan, O.D. Makinde, Z.H. Khan: MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip. International Journal of Heat and Mass Transfer 74 (2014) 285–291.
DOI: 10.1016/j.ijheatmasstransfer.2014.03.026
Google Scholar
[12]
N. Sandeep, Ram Prakash Sharma, M. Ferdows, Enhanced heat transfer in unsteady magnetohydrodynamic nanofluid flow embedded with aluminum alloy nanoparticles, Journal of Molecular Liquids 234 (2017) 437–443.
DOI: 10.1016/j.molliq.2017.03.051
Google Scholar
[13]
P. Mohan Krishna, N. Sandeep, Ram Prakash Sharma, Computational analysis of plane and parabolic flow of MHD Carreau fluid with buoyancy and exponential heat source effects, European Physical Journal Plus, 132 (2017) 202.
DOI: 10.1140/epjp/i2017-11469-9
Google Scholar
[14]
N. Sandeep, Effect of Aligned Magnetic field on liquid thin film flow of magnetic-nanofluid embedded with graphene nanoparticles, Advanced Powder Technology, 28 (2017) 865–875.
DOI: 10.1016/j.apt.2016.12.012
Google Scholar
[15]
M. Jayachandra Babu, N. Sandeep, M.E. Ali, Abdullah O. Nuhait, Magnetohydrodynamic dissipative flow across the slendering stretching sheet with temperature dependent variable viscosity, Results in Physics 7 (2017) 1801-1807.
DOI: 10.1016/j.rinp.2017.05.018
Google Scholar
[16]
Fang T, Zhang J, Zhong Y. Boundary layer flow over a stretching sheet with variable thickness. Appl Math Comput, 218 (2012) 7241–7252.
DOI: 10.1016/j.amc.2011.12.094
Google Scholar
[17]
Khader MM, Megahed AM. Boundary layer flow due to a stretching sheet with a variable thickness and slip velocity. J Appl Mech Tech Phys, 56 (2015) 241–247.
DOI: 10.1134/s0021894415020091
Google Scholar
[18]
Anjali Devi SP, Prakash M. Slip flow effects over hydromagnetic forced convective flow over a slendering stretching sheet. J Appl Fluid Mech, 9 (2016) 683–692.
DOI: 10.18869/acadpub.jafm.68.225.24064
Google Scholar
[19]
Anjali Devi SP, Prakash M., Temperature dependent viscosity and thermal conductivity effects on hydromagnetic flow over a slendering stretching sheet. J Niger Math Soc 34 (2015) 318–330.
DOI: 10.1016/j.jnnms.2015.07.002
Google Scholar
[20]
S. Anjali Devi, Prakash M., Thermal radiation effects on hydromagnetic flow over a slendering stretching sheet. J Braz Soc Mech Sci Eng., 38 (2016) 423-431. http: /dx. doi. org/10. 1007/s40430-015-0315-7.
DOI: 10.1007/s40430-015-0315-7
Google Scholar
[21]
W.A. Khan, O.D. Makinde, MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet, International Journal of Thermal Sciences 81 (2014) 118-124.
DOI: 10.1016/j.ijthermalsci.2014.03.009
Google Scholar
[22]
W.N. Mutuku, O.D. Makinde, Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms, Computers & Fluids 95 (2014) 88-97.
DOI: 10.1016/j.compfluid.2014.02.026
Google Scholar
[23]
O.D. Makinde, I.L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution, J. Mol. Liq. 221 (2016).
DOI: 10.1016/j.molliq.2016.06.047
Google Scholar
[24]
P. V. S. N. Murthy, M. K. Partha and G. P. Raja Sekhar, Soret and Dufour effects in a non-Darcy porous medium, Journal of Heat Transfer, 128 (2006) 605-610.
DOI: 10.1115/1.2188512
Google Scholar
[25]
M. M. Rashidi, T. Hayat, E. Erfani, S. A. Mohimanian Pour and A. H. Awatif , Simultaneous effects of partial slip and thermal-diffusion and diffusion-thermo on steady MHD convective flow due to a rotating disk, Communications in Nonlinear Science and Numerical Simulation, 16 (2011).
DOI: 10.1016/j.cnsns.2011.03.015
Google Scholar
[26]
S. R. Mishra, G. C. Dash and M. Acharya, Free convective flow of visco-elastic fluid in a vertical channel with Dufour effect, World Applied Sciences Journal, 28 (2013)1275-1280.
Google Scholar
[27]
J.V. Ramana Reddy, K. Anantha Kumar, V. Sugunamma, N. Sandeep, Effect of cross diffusion on MHD non-Newtonian fluids flow past a stretching sheet with non-uniform heat source/sink: A comparative study, Alexandria Engineering Journal, In Press, https: /doi. org/10. 1016/j. aej. 2017. 03. 008.
DOI: 10.1016/j.aej.2017.03.008
Google Scholar
[28]
K. Pushpalatha, J.V. Ramana Reddy, V. Sugunamma, and N. Sandeep, Numerical study of chemically reacting unsteady Casson fluid flow past a stretching surface with cross diffusion and thermal radiation, Open Eng. 7 (2017) 69–76.
DOI: 10.1515/eng-2017-0013
Google Scholar
[29]
M. Turkyilmazoglu, I. Pop, Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect, International Journal of Heat and Mass Transfer, 59 (2013) 167-171.
DOI: 10.1016/j.ijheatmasstransfer.2012.12.009
Google Scholar