Inherent Irreversibility in a Variable Viscosity Hartmann Flow through a Rotating Permeable Channel with Hall Effects

Article Preview

Abstract:

We investigate entropy production rate in a temperature dependent viscosity Hartmann flow with Hall current through a rotating permeable channel. It is assumed that fluid suction occurs at the upper wall and injection at lower wall. The nonlinear governing differential equations are obtained, analyzed and solved numerically using shooting technique together with Runge-Kutta-Fehlberg integration method. Velocity and temperature profiles obtained from the numerical solutions are then used to compute the skin frictions, Nusselt number, the entropy generation rate and the Bejan number. The germane results are presented and discussed quantitatively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

180-188

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Mehrali, E. Sadeghinezhad, M. A. Rosen, A. R. Akhiani, S.T. Latibari, M. Mehrali, H.S.C. Metselaar, Heat transfer and entropy generation for laminar forced convection flow of graphene nanoplatelets nanofluids in a horizontal tube, International Communications in Heat and Mass Transfer, 66 (2015).

DOI: 10.1016/j.icheatmasstransfer.2015.05.007

Google Scholar

[2] A. S. Eegunjobi, O.D. Makinde, Entropy generation analysis in a variable viscosity MHD channel flow with permeable walls and convective heating, Mathematical Problems in Engineering, 2013, vol. 2013, Article ID 630798, 12 pages, doi: 10. 1155/2013/630798.

DOI: 10.1155/2013/630798

Google Scholar

[3] G. Yang, J. Y. Wu, Entropy generation in a rectangular channel of buoyancy opposed mixed convection, International Journal of Heat and Mass Transfer, 86 (2015) 809–819.

DOI: 10.1016/j.ijheatmasstransfer.2015.03.051

Google Scholar

[4] I. Guillermo, Entropy generation in MHD porous channel with hydrodynamic slip and convective boundary conditions, International Journal of Heat and Mass Transfer, 80 (2015) 274–280.

DOI: 10.1016/j.ijheatmasstransfer.2014.09.025

Google Scholar

[5] A. S. Eegunjobi, O. D. Makinde, Entropy generation analysis in transient variable viscosity Couette flow between two concentric pipes, Journal of Thermal Science and Technology, 9(2) (2014) JTST 0008.

DOI: 10.1299/jtst.2014jtst0008

Google Scholar

[6] S. Das, R. N. Jana, Hall effects on unsteady hydromagnetic flow induced by an eccentric–concentric rotation of a disk and a fluid at infinity, AinShamsEngineering Journal, 5 (2014)1325–1335.

DOI: 10.1016/j.asej.2014.06.003

Google Scholar

[7] G. S. Seth, S. Sarkar, S.M. Hussain, Effects of Hall current, radiation and rotation on natural convection heat and mass transfer flow past a moving vertical plate, Ain Shams Engineering Journal, 5 (2014) 489–503.

DOI: 10.1016/j.asej.2013.09.014

Google Scholar

[8] H. A. Attia, L. Aboul-Hassan, The effect of variable properties on the unsteady Hartmann flow with heat transfer considering the Hall effect, Applied Mathematical Modelling, 27 (2003) 551–563.

DOI: 10.1016/s0307-904x(03)00090-8

Google Scholar

[9] Z. Zhang, B. Li, Y. Chen, Hall effects on natural convection of participating MHD with thermal radiation in a cavity, International Journal of Heat and Mass Transfer, 66 (2013) 838–843.

DOI: 10.1016/j.ijheatmasstransfer.2013.07.090

Google Scholar

[10] O. D. Makinde, O. O. Onyejekwe, A numerical study of MHD generalized Couette flow and heat transfer with variable viscosity and electrical conductivity, Journal of Magnetism and Magnetic Materials, 323 (2011) 2757–2763.

DOI: 10.1016/j.jmmm.2011.05.040

Google Scholar

[11] S. K. Ghosh, P. K. Bhattacharjee, Magnetohydrodynamic convective flow in a rotating channel. Archives of Mechanics, 52 (2000) 303–318.

Google Scholar

[12] O. D. Makinde, Thermal decompositionof unsteady non-NewtonianMHD Couette flow with variable properties, International Journal of Numerical Methods for Heat and Fluid Flow, 25(2) (2015) 252-264.

DOI: 10.1108/hff-12-2013-0342

Google Scholar

[13] T. Chinyoka, O. D. Makinde, A. S. Eegunjobi, Entropy analysis of MHD unsteady flow through a porous pipe with buoyancy effects, Journal of porousmedia, 16(9) (2013) 823-836.

DOI: 10.1615/jpormedia.v16.i9.40

Google Scholar

[14] K. R Cramer, S. I. Pai, Magnetofluid Dynamics for Engineers and Applied Physicists, McGraw–Hill, New York., (1973).

Google Scholar

[15] T. Chinyoka, O. D Makinde, Numerical investigation of entropy generation in unsteady MHD generalized Couette flow with variable electricalconductivity, The Scientific World Journal, 2013, Article ID 364695 (1-11 pages).

DOI: 10.1155/2013/364695

Google Scholar