Effect of Convective Boundary Condition on MHD Carreau Dusty Fluid over a Stretching Sheet with Heat Source

Article Preview

Abstract:

The underlying intention of the present study is to analyze the steady incompressible magneto hydrodynamic Carreau Dusty fluid over a stretching sheet with exponentially decaying heat source. Convective conditions are considered to control the thermal boundary layer. Similarity transformations were used to convert partial differential equations (PDEs) to a system of nonlinear ordinary differential equations (NODEs) which are solved numerically by employing Runge-Kutta with Newton’s technique. The effect of pertinent parameters on velocity and temperature profiles of both fluid and dust phase within the boundary layer has been studied by considering various values of controlling parameters. In addition, skin friction coefficient and reduced heat transfer coefficient have been examined for various values of the governing parameters. It is observed that the rate of heat transfer depreciates with space dependent heat generation and enhanced with the existing convective condition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

233-241

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.G. Saffman, On the stability of a laminar flow of a dusty gas, J. Fluid Mechanics, 131 (1962) 20–128.

Google Scholar

[2] K.L. Krupa Lakshmi, B.J. Gireesha, Rama S R Gorla, B. Mahantesh, Two-phase Boundary Layer Flow , Heat and Mass Transfer of a Dusty Liquid past a Stretching Sheet with Thermal Radiation, Int J. Industrial Mathematics, 8(3) (2016) 14 pages.

DOI: 10.1007/s00231-014-1477-z

Google Scholar

[3] L.J. Crane, Flow past a stretching plate, ZAMP, 21 (1970) 645-647.

Google Scholar

[4] B.J. Gireesha, G.S. Roopa, C.S. Bagewadi, Effect of viscous dissipation and heat source on flow and heat transfer of dusty fluid over unsteady stretching sheet, Appl Math Mech, 33 (2012) 1001-1014.

DOI: 10.1007/s10483-012-1601-9

Google Scholar

[5] Om. Prakash, O. D. Makinde, MHD oscillatory Couette flow of dusty fluid in a channel filled with a porous medium with radiative heat and buoyancy force. Latin American Applied Research, 45(3) (2015) 185-191.

DOI: 10.52292/j.laar.2015.396

Google Scholar

[6] R. Nandkeolyar, G. S. Seth, O. D. Makinde, P. Sibanda, M. S. Ansari, Unsteady vertical plate with ramped temperature in the presence of thermal radiation. ASME-Journal of Applied Mechanics 80, (2013) 061003(1-9).

DOI: 10.1115/1.4023959

Google Scholar

[7] C.S.K. Raju, N. Sandeep, C. Sulochana,V. Sugunamma, M. JayachandraBabu, Radiation, inclined magnetic field and cross-diffusion effects on flow over a stretching surface, Journal of the Nigerian Mathematical Society, 34(2) (2015) 169-180.

DOI: 10.1016/j.jnnms.2015.02.003

Google Scholar

[8] M. A. Aziz, Mixed convection flow of a micropolar fluid from an unsteady stretching surface with viscous dissipation, Journal of the Egyptian Mathematical Society 21 (2013) 385-394.

DOI: 10.1016/j.joems.2013.02.010

Google Scholar

[9] O. D. Makinde, Computational modelling of nanofluids flow over a convectively heated unsteady stretching sheet. Current Nanoscience, 9 (2013) 673-678.

DOI: 10.2174/15734137113099990068

Google Scholar

[10] H. Alfven, Existence of electromagnetic –hydrodynamic waves, Nature, 150 (1942) 405-406.

Google Scholar

[11] A. Chamkha, MHD flow of a uniformly stretched vertical permeable surface in the presence of heat generation /absorption and a chemical reaction, Int . Comm. Heat Mass Transfer, 30(3) (2003) 413-422.

DOI: 10.1016/s0735-1933(03)00059-9

Google Scholar

[12] C. S. K. Raju, N. Sandeep, Heat and mass transfer in MHD non-Newtonian bio-convection flow over a rotating cone/plate with cross diffusion, Journal of Molecular Liquids, 215 (2016)115-126.

DOI: 10.1016/j.molliq.2015.12.058

Google Scholar

[13] M. A .A. Mahmoud, Thermal radiation effects on MHD flow of a micro polar fluid over a stretching surface with variable thermal conductivity, Physica A, 375 (2007) 401-410.

DOI: 10.1016/j.physa.2006.09.010

Google Scholar

[14] W. Ibrahim, O. D. Makinde, Magnetohydrodynamic stagnation point flow and heat transfer of Casson nanofluid past a stretching sheet with slip and convective boundary condition. Journal of Aerospace Engineering, 29(2) (2016) 04015037(1-11).

DOI: 10.1061/(asce)as.1943-5525.0000529

Google Scholar

[15] T. Hayat, S. Asad, M. Mustafa, A. Alsaedi, Boundary layer flow of Carreau fluid over a convectively heated stretching sheet, Applied Mathematics and Computation 246 (2014) 12–22.

DOI: 10.1016/j.amc.2014.07.083

Google Scholar

[16] C.S.K. Raju, N. Sandeep, Falkner- Skan flow of a magnetic- Carreau fluid past a wedge in the presence of cross diffusion effects, The European Physical Journal Plus, (2016) 131- 267.

DOI: 10.1140/epjp/i2016-16267-3

Google Scholar

[17] A. Ishak, R. Nazar, I. Pop, Heat transfer over a stretching surface with variable heat flux in micro polar fluids, Phys. Lett. A. 372(5), (2008) 559–561.

DOI: 10.1016/j.physleta.2007.08.003

Google Scholar

[18] G. Sreedevi, D. R. V. Prasada Rao, O. D. Makinde, G. V. Ramana Reddy, Soret and Dufour effects on MHD flow with heat and mass transfer past a permeable stretching sheet in presence of thermal radiation. Indian Journal of Pure & Applied Physics, 55 (2017).

Google Scholar

[19] S. U. Mamatha, Mahesha, C. S. K. Raju, Cattaneo-Christov on heat and mass transfer of unsteady Eyring Powell dusty nanofluid over sheet with heat and mass flux conditions, Informatics medicine: Unlocked, 9, (2017) 76-85.

DOI: 10.1016/j.imu.2017.06.001

Google Scholar

[20] O.D. Makinde, W.A. Khan, Z.H. Khan, Stagnation point flow of MHD chemically reacting nanofluid over a stretching convective surface with slip and radiative heat. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 231(4) (2017).

DOI: 10.1177/0954408916629506

Google Scholar

[21] N. Babu, G. Neeraja, C. S. K. Raju, Cattaneo-Christov Heat Flux on Blasius and Sakiadis Flow in a Suspension of Carbon Nanotubes with Thermal Radiation, Journal of Nanofluid, 6(6) (2017) 1166-1172.

DOI: 10.1166/jon.2017.1410

Google Scholar

[22] I. Ullah, S. Shafie, O. D. Makinde, I. Khan, Unsteady MHD Falkner-Skan flow of Casson nanofluid with generative/destructive chemical reaction. Chemical Engineering Science, 172(2017) 694–706.

DOI: 10.1016/j.ces.2017.07.011

Google Scholar

[23] A. Muhammad, O. D. Makinde, Thermodynamics analysis of unsteady MHD mixed convection with slip and thermal radiation over a permeable surface. Defect and Diffusion Forum, 374 (2017) 29-46.

DOI: 10.4028/www.scientific.net/ddf.374.29

Google Scholar

[24] O. D. Makinde, S. R. Mishra, Chemically reacting MHD mixed convection variable viscosity Blasius flow embedded in a porous medium. Defect and Diffusion Forum, 374 (2017) 83-91.

DOI: 10.4028/www.scientific.net/ddf.374.83

Google Scholar