[1]
B. C. Sakiadis, Boundary layer behaviour on continuous solid surfaces: I. Boundary layer equations for two-dimensional and axisymmetric flow, AIChE Journal 7(1) (1961) 26-28.
DOI: 10.1002/aic.690070108
Google Scholar
[2]
T. Fang, Similarity solutions for a moving-flat plate thermal boundary layer, Acta Mech., 163 (2003) 161-172.
DOI: 10.1007/s00707-003-0004-y
Google Scholar
[3]
V. M. Soundalgekar, H. S. Takhar, U. N. Das, R. K. Deka, A. Sarmah, Effect of variable viscosity on boundary layer flow along a continuously moving plate with variable surface temperature, Heat Mass Transf., 40 (2004) 421-424.
DOI: 10.1007/s00231-003-0439-7
Google Scholar
[4]
O. D. Makinde, Analysis of Sakiadis flow of nanofluids with viscous dissipation and Newtonian heating, Appl. Math. Mech., 33(12) (2012) 1545–1554.
DOI: 10.1007/s10483-012-1642-8
Google Scholar
[5]
O. D. Makinde, A. Ogulu, The effect of thermal radiation on the heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate permeated by a transverse magnetic field, Chem. Eng. Comm., 195(12) (2008) 1575-584.
DOI: 10.1080/00986440802115549
Google Scholar
[6]
M. Ferdows, S. M. Chapal, A. A. Afify, Boundary layer flow and heat transfer of a nanofluid over a permeable unsteady stretching sheet with viscous dissipation, J. Eng. Thermophy., 23(3) (2014) 216–228.
DOI: 10.1134/s1810232814030059
Google Scholar
[7]
E. M. Abo-Eldahab, M. S. Elgendy, Radiation effect on convective heat transfer in an electrically conducting fluid at a stretching surface with variable viscosity and uniform free stream, Phy. Scr., 62 (2000) 321-325.
DOI: 10.1238/physica.regular.062a00321
Google Scholar
[8]
M. Madhu, N. Kishan, A. J. Chamkha, Unsteady flow of a Maxwell nanofluid over a stretching surface in the presence of magnetohydrodynamic and thermal radiation effects, Prop. Power Res., 6(1) (2017) 31–40.
DOI: 10.1016/j.jppr.2017.01.002
Google Scholar
[9]
Y. Zhang, M. Zhang, Y. Bai, Unsteady flow and heat transfer of power-law nanofluid thin film over a stretching sheet with variable magnetic field and power-law velocity slip effect, J. Taiwan Inst. Chem. Eng., 70 (2017) 104–110.
DOI: 10.1016/j.jtice.2016.10.052
Google Scholar
[10]
O.D. Makinde, W.A. Khan, J.R. Culham, MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer, Int. J. Heat Mass Transf., 93 (2016) 595–604.
DOI: 10.1016/j.ijheatmasstransfer.2015.10.050
Google Scholar
[11]
M. Gnaneswara Reddy, K. Venugopal Reddy, O.D. Makinde: Hydromagnetic peristaltic motion of a reacting and radiating couple stress fluid in an inclined asymmetric channel filled with a porous medium. Alexandria Engineering Journal (2016).
DOI: 10.1016/j.aej.2016.04.010
Google Scholar
[12]
Gnaneswara Reddy Machireddy: Influence of thermal radiation, viscous dissipation and Hall current on MHD convection flow over a stretched vertical flat plate. Ain Shams Engineering Journal (2014) 5, 169–175.
DOI: 10.1016/j.asej.2013.08.003
Google Scholar
[13]
H. A. Attia, Axisymmetric stagnation point flow towards a stretching surface in the presence of a uniform magnetic field with heat generation, Tamkang J. Sci. Eng., 10(1) (2007) 11–16.
Google Scholar
[14]
J. Zhu, L. Zheng, X. Zhang, Hydrodynamic plane and axisymmetric slip stagnation-point flow with thermal radiation and temperature jump, J. Mech. Sci. Tech., 25(7) (2011) 1837–1844.
DOI: 10.1007/s12206-011-0423-y
Google Scholar
[15]
O. D. Makinde, Computational modelling of MHD unsteady flow and heat transfer over a flat plate with Navier slip and Newtonian heating. Brazilian Journal of Chemical Engineering, 29(1), (2012) 159-166.
DOI: 10.1590/s0104-66322012000100017
Google Scholar
[16]
F.M. Hayd, I.A. Hassanien, Magnetohydrodynamic and constant suction/ injection effects of axisymmetric stagnation point flow and mass transfer for power-law fluids, Indian J. Pure Appl. Math., 17(1) (1986) 108–120.
Google Scholar
[17]
M. Miklavcic, C.Y. Wang, Viscous flow due to a shrinking sheet, Q. Appl. Math., 64(2) (2006) 283–290.
Google Scholar
[18]
T. Fang, Boundary layer flow over a shrinking sheet with power-law velocity, Int. J. Heat Mass Transf., 51 (25/26) (2008) 5838–5843.
DOI: 10.1016/j.ijheatmasstransfer.2008.04.067
Google Scholar
[19]
S. R. Pop, T. Grosan, I. Pop, Radiation effects on the flow near the stagnation point of a stretching sheet, Tech. Mech., 25 (2004) 100–106.
Google Scholar
[20]
D. Pal, G. Mandal, Influence of thermal radiation on mixed convection heat and mass transfer stagnation-point flow in nanofluids over stretching/shrinking sheet in a porous medium with chemical reaction, Nucl. Eng. Des., 273(1) (2014) 644–652.
DOI: 10.1016/j.nucengdes.2014.01.032
Google Scholar
[21]
A. Muhammad, O. D. Makinde, Thermodynamics analysis of unsteady MHD mixed convection with slip and thermal radiation over a permeable surface, Defect and Diffusion Forum, 374 (2017) 29-46.
DOI: 10.4028/www.scientific.net/ddf.374.29
Google Scholar
[22]
O. D. Makinde, Computational modelling of nanofluids flow over a convectively heated unsteady stretching sheet, Current Nanoscience, 9 (2013) 673-678.
DOI: 10.2174/15734137113099990068
Google Scholar
[23]
O. D. Makinde, Heat and mass transfer by MHD mixed convection stagnation point flow toward a vertical plate embedded in a highly porous medium with radiation and internal heat generation, Meccanica, 47 (2012) 1173-1184.
DOI: 10.1007/s11012-011-9502-5
Google Scholar
[24]
O. D. Makinde, Chemically reacting hydromagnetic unsteady flow of a radiating fluid past a vertical plate with constant heat flux, Zeitschriftf¨urNaturforschung, 67 (2012) 239-247.
DOI: 10.5560/zna.2012-0014
Google Scholar
[25]
A. Raptis, Radiation and free convection flow through a porous medium, Int. Commun Heat Mass Transf., 25 (2009)289-295.
DOI: 10.1016/s0735-1933(98)00016-5
Google Scholar
[26]
S. Rosseland, Theoretical Astrophysics. Oxford University, New York, NY, USA, (1936).
Google Scholar
[27]
M. N. Ozisik, Radiation transfer and interactions with conduction and convection, Wiley-Inter-Science Publication, USA, (1973).
Google Scholar
[28]
P. Dulal, P. S. Hiremalh, Computational modelling of heat transfer over an unsteady stretching surface embedded in a porous medium. Meccanica, 45(3), 415-524, (2009).
DOI: 10.1007/s11012-009-9254-7
Google Scholar
[29]
W. Ibrahim, B. Shanker, Unsteady MHD boundary layer flow and heat transfer due to stretching sheet in the presence of heat source or sink by quasi linearization technique. Int J Appl Math Mech., 8(7), 18–30, (2012).
DOI: 10.1016/j.compfluid.2012.08.019
Google Scholar
[30]
T. Y. Na, Computational Methods in Engineering Boundary Value Problem, Academic Press, (1979).
Google Scholar