Analysis of Blasius Flow of Hybrid Nanofluids over a Convectively Heated Surface

Article Preview

Abstract:

This article explores the problem of Blasius flow of water based hybrid nanofluid containing Al2O3 and Cu as nanoparticles over a convectively heated surface. Five different geometries of nanoparticles shape viz spherical, bricks, cylindrical, platelets and blades are considered in our analysis. The nonlinear model equations are obtained and tackled numerically using shooting method coupled with Runge-Kutta Fehlberg numerical scheme. The effects of nanoparticle shapes and other relevant thermophysical parameters on fluid velocity, temperature, skin friction and Nusselt number are discussed with the help of computational illustrations. The result for skin friction coefficient is compared with already existing results in the literature and excellent agreement was obtained. It is found that the heat transfer rate of hybrid nanofluid (Cu-Al2O3/Water) is higher than that of nanofluid (Al2O3/Water) and the Nusselt number increment for blade shaped nanoparticles is the highest as compared to that of platelet, cylindrical, brick and spherical shaped nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-41

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Blasius, Grenzschlichten in Flüssigkeitenmitkleiner Reibung, Z. Math. Physik, 56 (1908) p.1.

Google Scholar

[2] S. U. S Choi, Enhancing thermal conductivity of fluids with nanoparticles. In: Proc. 1995 ASME Int. Mech. Engng. Congress and Exposition, San Franciscos, USA, ASME, FED 231/MD 66 (1995) 99–105.

Google Scholar

[3] P. Kiblinski, S. R. Phillpot, S. U. S. Choi, J. A. Eastman, Mechanism of heat flow is suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer, 42 (2002) 855-863.

DOI: 10.1016/s0017-9310(01)00175-2

Google Scholar

[4] X. Wang, X. Xu, S.U.S. Choi, Thermal conductivity of nanoparticle fluid mixture, J. Thermophys. Heat Transfer, 13 (1999) 474-480.

DOI: 10.2514/2.6486

Google Scholar

[5] J. Eastman, S.U.S. Choi, S. Li, L. Thompson, S. Lee, Enhanced thermal conductivity through the development of nanofluids, Cambridge Univ. Press, (1996).

Google Scholar

[6] J. Buongiorno, Convective transport in nanofluids. ASME J. Heat Transf. 128, (2006) 240-250.

Google Scholar

[7] D. A. Nield, A. V. Kuznetsov, The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid, Int. J. Heat Mass Transf. 52, (2009) 5792–5795.

DOI: 10.1016/j.ijheatmasstransfer.2009.07.024

Google Scholar

[8] A.V. Kuznetsov, D. A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate, Int. J. Thermal Sci. 49 (2010) 243–247.

DOI: 10.1016/j.ijthermalsci.2009.07.015

Google Scholar

[9] O.D. Makinde, A. Aziz, Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition, International Journal of Thermal Sciences, 50 (2011) 1326-1332.

DOI: 10.1016/j.ijthermalsci.2011.02.019

Google Scholar

[10] S. Ahmad, A.M. Rohni, I. Pop, Blasius and Sakiadis problems in nanofluids, ActaMech 218, (2011) 195–204.

DOI: 10.1007/s00707-010-0414-6

Google Scholar

[11] R. K. Tiwari, M. K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50 (2007) 2002–(2018).

DOI: 10.1016/j.ijheatmasstransfer.2006.09.034

Google Scholar

[12] E.V. Timofeeva, J.L. Routbort, D. Singh, Particle shape effects on thermophysical properties of alumina nanofluids, Journal of Applied Physics 106 (1) (2009), (014304-014304-014310).

DOI: 10.1063/1.3155999

Google Scholar

[13] M. Raja, R.M. Arunachalam, S. Suresh, Experimental studies on heat transfer of alumina/water nanofluid in a shell and tube heat exchanger with wire coil insert, International Journal of Mechanical and Materials Engineering 7 (1) (2012) 16–23.

Google Scholar

[14] M.M. Elias, M. Miqdad, I. M. Mahbubu, R. Saidur, M. Kamalisarvestani, M.R. Sohel, A. Hepbasli, N.A. Rahim, M.A. Amalina, Effect of nanoparticle shape on the heat transfer and thermodynamic performance of a shell and tube heat exchanger. International Communications in Heat and Mass Transfer 44 (2013).

DOI: 10.1016/j.icheatmasstransfer.2013.03.014

Google Scholar

[15] M. Baghbanzadeh, A. Rashidi, D. Rashtchian, R. Lotfiand, A. Amrollahi, Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids, ThermochimicaActa549 (2012).

DOI: 10.1016/j.tca.2012.09.006

Google Scholar

[16] M. N. Labib, Md. J. Nine, H. Afrianto, H. Chung, H. Jeong, Numerical investigation on effect of base fluids and hybrid nanofluid in forced convective heat transfer, International Journal of Thermal Sciences 71 (2013), 163–171.

DOI: 10.1016/j.ijthermalsci.2013.04.003

Google Scholar

[17] O.D. Makinde, Effects of viscous dissipation and Newtonian heating on boundary-layer flow of nanofluids over a flat plate, International Journal of Numerical Methods for Heat& Fluid Flow 29 (2013), 1291–1303.

DOI: 10.1108/hff-12-2011-0258

Google Scholar

[18] W. Ibrahim, O.D. Makinde, Magnetohydrodynamic stagnation point flow of a power-law nanofluid towards a convectively heated stretching sheet with slip, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 230(5), (2016).

DOI: 10.1177/0954408914550357

Google Scholar

[19] O.D. Makinde, W.A. Khan, J.R. Culham, MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer. International Journal of Heat and Mass Transfer, 93 (2016) 595–604.

DOI: 10.1016/j.ijheatmasstransfer.2015.10.050

Google Scholar

[20] O.D. Makinde, F. Mabood, W.A. Khan, M.S. Tshehla, MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat. Journal of Molecular Liquids, 219 (2016) 624-630.

DOI: 10.1016/j.molliq.2016.03.078

Google Scholar

[21] O.D. Makinde, I. L. Animasaun, Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution, International Journal of Thermal Sciences, 109 (2016).

DOI: 10.1016/j.ijthermalsci.2016.06.003

Google Scholar

[22] O.D. Makinde, I. L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution, Journal of Molecular Liquids, 221 (2016).

DOI: 10.1016/j.molliq.2016.06.047

Google Scholar

[23] W.A. Khan, R. Culham, O.D. Makinde, Hydromagnetic Blasius flow of power law nanofluids over a convectively heated vertical plate, The Canadian Journal of Chemical Engineering, 93(10) (2015) 1830-1837.

DOI: 10.1002/cjce.22280

Google Scholar

[24] J. Sarkar, P. Ghosh, A. Adil, A review on hybrid nanofluids: recent research, development and applications, Renew Sustain Energy Rev. 43 (2015) 164-177.

DOI: 10.1016/j.rser.2014.11.023

Google Scholar

[25] B. Takabi, H. Shokouhmand, Effects of AlO-Cu/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime, Int. J. Modern Phy. C 26(1) (2015), Paper 1550047.

DOI: 10.1142/s0129183115500473

Google Scholar

[26] W.S. Han, S.H. Rhi, Thermal characteristics of grooved heat pipe with hybrid nanofluids, Therm. Sci. 15 (2011) 195–206.

DOI: 10.2298/tsci100209056h

Google Scholar

[27] P. Selvakumar, S. Suresh, Use of AlO-Cu / water hybrid nanofluid in an electronic heat sink, IEEE Trans Compon Packag Manuf. Technol., 2 (2012) 1600–1607.

DOI: 10.1109/tcpmt.2012.2211018

Google Scholar

[28] S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Effect of AlO-Cu / water hybrid nanofluid in heat transfer, Exp. Therm. Fluid Sci. 38(2012) 54–60.

DOI: 10.1016/j.expthermflusci.2011.11.007

Google Scholar

[29] R. Nimmagadda, K. Venkatasubbaiah, Conjugate heat transfer analysis of micro channel using novel hybrid nanofluids (AlO + Ag/Water), Eur. J. Mech. B Fluids 52 (2015) 19–27.

Google Scholar

[30] H.R. Allahyar, F. Hormozi, N. B. Zare, Experimental investigation on the thermal performance of a coiled heat exchanger using a new hybrid nanofluid, Exp. Therm. Fluid Sci. 76 (2016) 324-329.

DOI: 10.1016/j.expthermflusci.2016.03.027

Google Scholar

[31] D. Huang, Z. Wu, B. Sunden, Effects of hybrid nanofluid mixture in plate heat exchangers, Exp. Therm. Fluid Sci. 72(2016)190-196.

DOI: 10.1016/j.expthermflusci.2015.11.009

Google Scholar

[32] B. Takabi, A. M. Gheitaghy, P. Tazraei, Hybrid water-based suspension of AlO and Cu nanoparticles on laminar convection effectiveness, J. Thermophys. Heat Transf. 30(3) (2016) 523-532.

DOI: 10.2514/1.t4756

Google Scholar

[33] T. Cebeci, P. Bradshaw, Physical and computational aspects of convective heat transfer, Springer, New York, USA (1988).

Google Scholar