[1]
H. Blasius, Grenzschlichten in Flüssigkeitenmitkleiner Reibung, Z. Math. Physik, 56 (1908) p.1.
Google Scholar
[2]
S. U. S Choi, Enhancing thermal conductivity of fluids with nanoparticles. In: Proc. 1995 ASME Int. Mech. Engng. Congress and Exposition, San Franciscos, USA, ASME, FED 231/MD 66 (1995) 99–105.
Google Scholar
[3]
P. Kiblinski, S. R. Phillpot, S. U. S. Choi, J. A. Eastman, Mechanism of heat flow is suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer, 42 (2002) 855-863.
DOI: 10.1016/s0017-9310(01)00175-2
Google Scholar
[4]
X. Wang, X. Xu, S.U.S. Choi, Thermal conductivity of nanoparticle fluid mixture, J. Thermophys. Heat Transfer, 13 (1999) 474-480.
DOI: 10.2514/2.6486
Google Scholar
[5]
J. Eastman, S.U.S. Choi, S. Li, L. Thompson, S. Lee, Enhanced thermal conductivity through the development of nanofluids, Cambridge Univ. Press, (1996).
Google Scholar
[6]
J. Buongiorno, Convective transport in nanofluids. ASME J. Heat Transf. 128, (2006) 240-250.
Google Scholar
[7]
D. A. Nield, A. V. Kuznetsov, The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid, Int. J. Heat Mass Transf. 52, (2009) 5792–5795.
DOI: 10.1016/j.ijheatmasstransfer.2009.07.024
Google Scholar
[8]
A.V. Kuznetsov, D. A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate, Int. J. Thermal Sci. 49 (2010) 243–247.
DOI: 10.1016/j.ijthermalsci.2009.07.015
Google Scholar
[9]
O.D. Makinde, A. Aziz, Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition, International Journal of Thermal Sciences, 50 (2011) 1326-1332.
DOI: 10.1016/j.ijthermalsci.2011.02.019
Google Scholar
[10]
S. Ahmad, A.M. Rohni, I. Pop, Blasius and Sakiadis problems in nanofluids, ActaMech 218, (2011) 195–204.
DOI: 10.1007/s00707-010-0414-6
Google Scholar
[11]
R. K. Tiwari, M. K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50 (2007) 2002–(2018).
DOI: 10.1016/j.ijheatmasstransfer.2006.09.034
Google Scholar
[12]
E.V. Timofeeva, J.L. Routbort, D. Singh, Particle shape effects on thermophysical properties of alumina nanofluids, Journal of Applied Physics 106 (1) (2009), (014304-014304-014310).
DOI: 10.1063/1.3155999
Google Scholar
[13]
M. Raja, R.M. Arunachalam, S. Suresh, Experimental studies on heat transfer of alumina/water nanofluid in a shell and tube heat exchanger with wire coil insert, International Journal of Mechanical and Materials Engineering 7 (1) (2012) 16–23.
Google Scholar
[14]
M.M. Elias, M. Miqdad, I. M. Mahbubu, R. Saidur, M. Kamalisarvestani, M.R. Sohel, A. Hepbasli, N.A. Rahim, M.A. Amalina, Effect of nanoparticle shape on the heat transfer and thermodynamic performance of a shell and tube heat exchanger. International Communications in Heat and Mass Transfer 44 (2013).
DOI: 10.1016/j.icheatmasstransfer.2013.03.014
Google Scholar
[15]
M. Baghbanzadeh, A. Rashidi, D. Rashtchian, R. Lotfiand, A. Amrollahi, Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids, ThermochimicaActa549 (2012).
DOI: 10.1016/j.tca.2012.09.006
Google Scholar
[16]
M. N. Labib, Md. J. Nine, H. Afrianto, H. Chung, H. Jeong, Numerical investigation on effect of base fluids and hybrid nanofluid in forced convective heat transfer, International Journal of Thermal Sciences 71 (2013), 163–171.
DOI: 10.1016/j.ijthermalsci.2013.04.003
Google Scholar
[17]
O.D. Makinde, Effects of viscous dissipation and Newtonian heating on boundary-layer flow of nanofluids over a flat plate, International Journal of Numerical Methods for Heat& Fluid Flow 29 (2013), 1291–1303.
DOI: 10.1108/hff-12-2011-0258
Google Scholar
[18]
W. Ibrahim, O.D. Makinde, Magnetohydrodynamic stagnation point flow of a power-law nanofluid towards a convectively heated stretching sheet with slip, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 230(5), (2016).
DOI: 10.1177/0954408914550357
Google Scholar
[19]
O.D. Makinde, W.A. Khan, J.R. Culham, MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer. International Journal of Heat and Mass Transfer, 93 (2016) 595–604.
DOI: 10.1016/j.ijheatmasstransfer.2015.10.050
Google Scholar
[20]
O.D. Makinde, F. Mabood, W.A. Khan, M.S. Tshehla, MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat. Journal of Molecular Liquids, 219 (2016) 624-630.
DOI: 10.1016/j.molliq.2016.03.078
Google Scholar
[21]
O.D. Makinde, I. L. Animasaun, Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution, International Journal of Thermal Sciences, 109 (2016).
DOI: 10.1016/j.ijthermalsci.2016.06.003
Google Scholar
[22]
O.D. Makinde, I. L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution, Journal of Molecular Liquids, 221 (2016).
DOI: 10.1016/j.molliq.2016.06.047
Google Scholar
[23]
W.A. Khan, R. Culham, O.D. Makinde, Hydromagnetic Blasius flow of power law nanofluids over a convectively heated vertical plate, The Canadian Journal of Chemical Engineering, 93(10) (2015) 1830-1837.
DOI: 10.1002/cjce.22280
Google Scholar
[24]
J. Sarkar, P. Ghosh, A. Adil, A review on hybrid nanofluids: recent research, development and applications, Renew Sustain Energy Rev. 43 (2015) 164-177.
DOI: 10.1016/j.rser.2014.11.023
Google Scholar
[25]
B. Takabi, H. Shokouhmand, Effects of AlO-Cu/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime, Int. J. Modern Phy. C 26(1) (2015), Paper 1550047.
DOI: 10.1142/s0129183115500473
Google Scholar
[26]
W.S. Han, S.H. Rhi, Thermal characteristics of grooved heat pipe with hybrid nanofluids, Therm. Sci. 15 (2011) 195–206.
DOI: 10.2298/tsci100209056h
Google Scholar
[27]
P. Selvakumar, S. Suresh, Use of AlO-Cu / water hybrid nanofluid in an electronic heat sink, IEEE Trans Compon Packag Manuf. Technol., 2 (2012) 1600–1607.
DOI: 10.1109/tcpmt.2012.2211018
Google Scholar
[28]
S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Effect of AlO-Cu / water hybrid nanofluid in heat transfer, Exp. Therm. Fluid Sci. 38(2012) 54–60.
DOI: 10.1016/j.expthermflusci.2011.11.007
Google Scholar
[29]
R. Nimmagadda, K. Venkatasubbaiah, Conjugate heat transfer analysis of micro channel using novel hybrid nanofluids (AlO + Ag/Water), Eur. J. Mech. B Fluids 52 (2015) 19–27.
Google Scholar
[30]
H.R. Allahyar, F. Hormozi, N. B. Zare, Experimental investigation on the thermal performance of a coiled heat exchanger using a new hybrid nanofluid, Exp. Therm. Fluid Sci. 76 (2016) 324-329.
DOI: 10.1016/j.expthermflusci.2016.03.027
Google Scholar
[31]
D. Huang, Z. Wu, B. Sunden, Effects of hybrid nanofluid mixture in plate heat exchangers, Exp. Therm. Fluid Sci. 72(2016)190-196.
DOI: 10.1016/j.expthermflusci.2015.11.009
Google Scholar
[32]
B. Takabi, A. M. Gheitaghy, P. Tazraei, Hybrid water-based suspension of AlO and Cu nanoparticles on laminar convection effectiveness, J. Thermophys. Heat Transf. 30(3) (2016) 523-532.
DOI: 10.2514/1.t4756
Google Scholar
[33]
T. Cebeci, P. Bradshaw, Physical and computational aspects of convective heat transfer, Springer, New York, USA (1988).
Google Scholar