Analysis of Nonlinear Heat Transfer in a Cylindrical Solid with Two-Step Exothermic Kinetics and Radiative Heat Loss

Article Preview

Abstract:

This paper examines the problem of nonlinear heat transfer in a cylindrical solid of combustible materials with two-step exothermic kinetics and radiative heat loss to the ambient surrounding. The reactant diffusion and temperature dependent pre-exponential factors with respect to sensitized, Arrhenius, and bimolecular kinetics are taken into account in the model energy balanced equation. Both regular perturbation method and numerical shooting technique coupled with Runge-Kutta-Fehlberg iteration scheme are employed to tackle the nonlinear model problem. The effects of various thermophysical parameters on the reactive cylindrical solid temperature, Nusselt number and thermal stability are discussed quantitatively with the help of computational illustrations. It is found that radiative heat loss enhances thermal stability of the material while the two-step exothermic kinetics promotes the onset of thermal instability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-28

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Bebernes, D. Eberly, Mathematical problems from combustion theory, Springer, New York, NY, USA, (1989).

Google Scholar

[2] Z.G. Szabo, Advances in kinetics of homogeneous gas reactions, Methuen and Company, Great Britain, UK, (1964).

Google Scholar

[3] D. A. Frank Kamenetskii, Diffusion and heat transfer in chemical kinetics, Plenum Press, New York, NY, USA, (1969).

Google Scholar

[4] O. D. Makinde, On the thermal decomposition of reactive materials of variable thermal conductivity and heat loss characteristics in a long pipe, Journal of Energetic Materials, 30(4) (2012) 283–298.

DOI: 10.1080/07370652.2011.566598

Google Scholar

[5] G. I. Barenblatt, J. B. Bell, W. Y. Crutchfield, The thermal explosion revisited, Proceedings of the national academy of sciences of the USA, 95(23) (1998) 13384–13386.

DOI: 10.1073/pnas.95.23.13384

Google Scholar

[6] O. D. Makinde, Exothermic explosions in a slab: a case study of series summation technique, International Communications in Heat and Mass Transfer, 31(8), (2004) 1227–1231.

DOI: 10.1016/j.icheatmasstransfer.2004.08.020

Google Scholar

[7] E. Balakrishnan, A. Swift, G. C. Wake, Critical values for some non-class A geometries in thermal ignition theory, Mathematical and Computer Modelling, 24(8) (1996) 1–10.

DOI: 10.1016/0895-7177(96)00133-1

Google Scholar

[8] F. A. Williams, Combustion theory, Benjamin & Cuminy publishing, Menlo Park, Calif, USA, 2nd edition, (1985).

Google Scholar

[9] C. Lohrer, U. Krause, J. Steinbach, Self-ignition of combustible bulk materials under various ambient conditions. Process Saf Environ., 83 (2005) 145–150.

DOI: 10.1205/psep.04234

Google Scholar

[10] J. D. Buckmaster, G. S. S. Ludford, Theory of laminar flames, Cambridge University Press, (1982).

Google Scholar

[11] O. D. Makinde, Hermite-Pade´ approach to thermal stability of reacting masses in a slab with asymmetric convective cooling, Journal of the Franklin Institute-Applied Mathematics and Engineering 349 (3), (2012) 957–965.

DOI: 10.1016/j.jfranklin.2011.12.001

Google Scholar

[12] R. S. Lebelo, O. D. Makinde, T. Chinyoka, Thermal decomposition analysis in a sphere of combustible materials. Advances in Mechanical Engineering, 9(2) (2017) 1-14.

DOI: 10.1177/1687814017692515

Google Scholar

[13] O. D. Makinde, Thermal stability of a reactive viscous flow through a porous-saturated channel with convective boundary conditions, Applied Thermal Engineering, 29(8/9), (2009) 1773–1777.

DOI: 10.1016/j.applthermaleng.2008.08.012

Google Scholar

[14] A. N. Garcia, R. Font, Thermogravimetric kinetic model of the pyrolysis and combustion of an ethylene-vinyl acetate copolymer refuse, Fuel, 83, (2004) 1165-1173.

DOI: 10.1016/j.fuel.2003.10.029

Google Scholar

[15] T. S. Fischer, N. Eisenreich, A. Pfeil, Kinetic parameters of the thermal decomposition of trimethylindium by DSC, ThermochimicaActa, 339 (1999) 35-40.

DOI: 10.1016/s0040-6031(99)00295-6

Google Scholar

[16] O. D. Makinde, M. S. Tshehla, Analysis of thermal stability in a convecting and radiating two-step reactive slab, Advances in Mechanical Engineering, 2013 (2013) Article ID 294961pp1-9.

DOI: 10.1155/2013/294961

Google Scholar

[17] F. S. Dainton, Chain reaction: An introduction, John Wiley & Sons, New York, NY, USA, (1960).

Google Scholar

[18] N. N. Semenov, Chemical kinetics and chain reactions, The Clarendon Press, Oxford, UK, (1935).

Google Scholar

[19] J.M. Simmie, Detailed chemical kinetic model for the combustion of hydrocarbon fuels. Prog Energ Combust 29 (2003) 599–634.

DOI: 10.1016/s0360-1285(03)00060-1

Google Scholar

[20] A. Arisoy, B. B. Beamish, E. Cetegen, Modelling spontaneous combustion of coal. Turk J EngEnv Sci. 30 (2006) 193–201.

Google Scholar

[21] S. Lebelo, O. D. Makinde, Modelling the impact of radiative heat loss on CO2 emission, O2 depletion and thermal stability in a reactive slab. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 39, No. M2, (2015).

Google Scholar

[22] S. Lebelo, O. D. Makinde, Numerical investigation of CO2 emission and thermal stability of a convective and radiative stockpile of reactive material in a cylindrical pipe. Advances in Mechanical Engineering, 7(12) (2015) 1–11.

DOI: 10.1177/1687814015620323

Google Scholar

[23] T. Chinyoka, O. D. Makinde, Computational analysis of CO2 emission, O2 depletion and thermal decompositionin a cylindrical pipe filled with reactive materials. Commun Nonlinear Sci. 18 (2013) 2448–2461.

DOI: 10.1016/j.cnsns.2013.01.018

Google Scholar

[24] T. Cebeci, P. Bradshaw, Physical and computational aspects of convective heat transfer, Springer, New York, USA (1988).

Google Scholar