Modeling of Laser-Soft Tissue Interactions Using the Dual-Phase Lag Equation: Sensitivity Analysis with Respect to Selected Tissue Parameters

Article Preview

Abstract:

Thermal processes occurring in soft tissues are subjected to laser irradiation are analyzed. The transient bioheat transfer is described by the generalized dual-phase lag model. This model consists of two coupled equations concerning the tissue and blood temperatures supplemented by the appropriate boundary and initial conditions. The efficiency of the internal heat source connected to the laser irradiation results from the solution of the diffusion equation. This approach is acceptable when the scattering dominates over the absorption for wavelengths between 650 and 1300 nm, and just such a situation occurs in the case of soft tissues. Sensitivity analysis with respect to the parameters occurring in the mathematical model is done using the direct approach (differentiation of the basic equations and the boundary-initial conditions with respect to the parameter considered), especially the absorption coefficient and scattering coefficient of the soft tissue are considered. At the stage of numerical modeling the basic problem and additional problems connected with the sensitivity functions are solved using the finite difference method. In the final part the conclusions and examples of computations are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-123

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.J. Welch, The thermal response of laser irradiated tissue, IEEE J. Quantum Elect. 20 (1984) 1471-1481.

Google Scholar

[2] J. Ashley, M. Welch, Optical-Thermal Response of Laser-Irradiated Tissue, Plenum Press, New York, (1995).

Google Scholar

[3] L.A. Dombrovsky, D. Baillis, Thermal Radiation in Disperse Systems: An engineering approach, Begell House, New York, (2010).

Google Scholar

[4] S.L. Jacques, B.W. Pogue, Tutorial on diffuse light transport, J. Biomed. Opt. 13 (2008) 1-19.

Google Scholar

[5] M.H. Niemz, Laser-Tissue Interaction: Fundamentals and Applications, Springer-Verlag, Berlin, Heidelberg, New York, (2007).

Google Scholar

[6] V.V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Second edition, SPIE Press, Vol. PM166, Bellingham, WA, (2007).

Google Scholar

[7] A.J. Welch, M.J.C. van Gemert (Eds.), Optical-Thermal Response of Laser Irradiated Tissue, 2nd edition, Springer, (2011).

Google Scholar

[8] L.A. Dombrovsky, J.H. Randrianalisoa, W. Lipinski, V. Timchenko, Simplified approaches to radiative transfer simulations in laser induced hyperthermia of superficial tumors, Comput. Thermal Sci. 5 (2013) 521-530.

DOI: 10.1615/computthermalscien.2013008157

Google Scholar

[9] L.A. Dombrovsky, V. Timchenko, M. Jackson, G.H. Yeoh, A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells, Int. J. Heat Mass Transfer 54 (2011) 5459-5469.

DOI: 10.1016/j.ijheatmasstransfer.2011.07.045

Google Scholar

[10] L.A. Dombrovsky, The use of transport approximation and diffusion-based models in radiative transfer calculations, Comput. Thermal Sci. 4 (2012) 297-315.

DOI: 10.1615/computthermalscien.2012005050

Google Scholar

[11] T.J. Farrel, M.S. Patterson, B. Wilson, A diffusion theory model of spatially resolved, steady state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo, Med. Phys. 19 (1992) 879-888.

DOI: 10.1118/1.596777

Google Scholar

[12] A. Fasano, D. Hömberg, D. Naumov, On a mathematical model for laser-induced thermotherapy, Appl. Math. Model. 34 (2010) 3831-3840.

DOI: 10.1016/j.apm.2010.03.023

Google Scholar

[13] Z. Guo, S.K. Wan, K. Kim, Ch. Kosaraju, Comparing diffusion approximation with radiation transfer analysis for light transfer in tissues, Opt. Rev. 10 (2003) 415-421.

DOI: 10.1007/s10043-003-0415-y

Google Scholar

[14] J. Mobley, T. Vo-Dinh, Optical properties of tissue, in: T. Vo-Dinh (Ed.), Biomedical Photonics Handbook, CRC Press, Boca Raton, FL, 2003, p.2.1-2.75.

DOI: 10.1201/9780203008997.sec1

Google Scholar

[15] H.H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm, J. Appl. Physiol. l (1948) 93-122.

DOI: 10.1152/jappl.1948.1.2.93

Google Scholar

[16] P. Vernotte, Les paradoxes de la theorie continue de l'equation de la chaleur, C.R.. Acad. Sci. I-Math. 246 (1958) 3154-3155.

Google Scholar

[17] F. Xu, K.A. Seffen, T.J. Lu, Non-Fourier analysis of skin biothermomechanics, Int. J. Heat Mass Transfer 51 (2008) 2237-2259.

DOI: 10.1016/j.ijheatmasstransfer.2007.10.024

Google Scholar

[18] Y. Zhang, Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues, Int. J. Heat Mass Transfer 52 (2009) 4829-4834.

DOI: 10.1016/j.ijheatmasstransfer.2009.06.007

Google Scholar

[19] M. Ciesielski, B. Mochnacki, Application of the control volume method using the Voronoi polygons for numerical modeling of bio-heat transfer processes, J. Theor. App. Mech. - Pol. 52 (2014) 927-935.

DOI: 10.15632/jtam-pl.52.4.927

Google Scholar

[20] F. Fanjul-Vélez, O.G. Romanov, J.L. Arce-Diego, Efficient 3D numerical approach for temperature prediction in laser irradiated biological tissues, Comput. Biol. Med. 39 (2009) 810-817.

DOI: 10.1016/j.compbiomed.2009.06.009

Google Scholar

[21] K.J. Chua, S.K. Chou, J.C. Ho, An analytical study on the thermal effects of cryosurgery on selective cell destruction, J. Biomech. 40 (2007) 100-116.

DOI: 10.1016/j.jbiomech.2005.11.005

Google Scholar

[22] M. Jasiński, Investigation of tissue thermal damage process with application of direct sensitivity method, Moll. Cell. Biomech. 10 (2013) 183-199.

Google Scholar

[23] Y. He, M. Shirazaki, H. Liu, R. Himeno, Z. Sun, A numerical coupling model to analyze the blood flow, temperature, and oxygen transport in human breast tumor under laser irradiation, Comp. Biol. Med. 36 (2006) 1336-1350.

DOI: 10.1016/j.compbiomed.2005.08.004

Google Scholar

[24] E. Majchrzak, B. Mochnacki, M. Jasiński, Numerical modelling of bioheat transfer in multi-layer skin tissue domain subjected to a flash fire, Computational Fluid and Solid Mechanics 2003, 1-2, 2003, pp.1766-1770.

DOI: 10.1016/b978-008044046-0.50431-0

Google Scholar

[25] M. Jaunich, S. Raje, K. Kim, K. Mitra, Z. Guo, Bio-heat transfer analysis during short pulse laser irradiation of tissues, Int. J. Heat Mass Transfer 51 (2008) 5511-5521.

DOI: 10.1016/j.ijheatmasstransfer.2008.04.033

Google Scholar

[26] M. Ciesielski, M. Duda, B. Mochnacki, Comparison of bio-heat transfer numerical models based on the Pennes and Cattaneo-Vernotte equations, J. Appl. Math. Comput. Mech. 15 (2016) 33-38.

DOI: 10.17512/jamcm.2016.4.04

Google Scholar

[27] E. Majchrzak, Numerical solution of dual phase lag model of bioheat transfer using the general boundary element method, CMES - Comp. Model. Eng. 69 (2010) 43-60.

DOI: 10.1016/j.enganabound.2014.07.012

Google Scholar

[28] N. Afrin, J. Zhou, Y. Zhang, D.Y. Tzou, J.K. Chen, Numerical simulation of thermal damage to living biological tissues induced by laser irradiation based on a generalized dual phase lag model, Numer. Heat Tr. A. Appl. 61 (2012) 483-501.

DOI: 10.1080/10407782.2012.667648

Google Scholar

[29] K. Kim, Z. Guo, Multi-time-scale heat transfer modeling of turbid tissues exposed to short-pulsed irradiations, Comput. Meth. Prog. Bio. 86 (2007) 112-123.

DOI: 10.1016/j.cmpb.2007.01.009

Google Scholar

[30] P. Hooshmand, A. Moradi, B. Kherzy, Bioheat transfer analysis of biological tissues induced by laser irradiation, Int. J. Therm. Sci. 90 (2015) 214-223.

DOI: 10.1016/j.ijthermalsci.2014.12.004

Google Scholar

[31] A. Narasimhan, S. Sadasivam, Non-Fourier bio heat transfer modelling of thermal damage during retinal laser irradiation, Int. J. Heat Mass Transfer 60 (2013) 591-597.

DOI: 10.1016/j.ijheatmasstransfer.2013.01.010

Google Scholar

[32] J. Zhou, J.K. Chen, Y. Zhang, Dual-phase lag effects on thermal damage to biological tissues caused by laser irradiation, Comp. Biol. Med. 39 (2009) 286-293.

DOI: 10.1016/j.compbiomed.2009.01.002

Google Scholar

[33] J. Zhou, Y. Zhang, J.K. Chen, An axisymmetric dual-phase-lag bioheat model for laser heating of living tissues, Int. J. Therm. Sci. 48 (2009) 1477-1485.

DOI: 10.1016/j.ijthermalsci.2008.12.012

Google Scholar

[34] E. Majchrzak, L. Turchan, J. Dziatkiewicz, Modeling of skin tissue heating using the generalized dual-phase lag equation, Arch. Mech. 67 (2015) 417-437.

Google Scholar

[35] S.A. Sapareto, W.C. Dewey, Thermal dose determination in cancer therapy, Int. J. Radiat. Oncol. 10 (1984) 787-800.

Google Scholar

[36] M. Kleiber, Parameter Sensitivity in Non-linear Mechanics, J. Willey & Sons, London, (1997).

Google Scholar

[37] K. Dems, B. Rousselet, Sensitivity analysis for transient heat conduction in a solid body – Part I, Struct. Optimization 17 (1999) 36-45.

DOI: 10.1007/bf01197711

Google Scholar

[38] G.A. Haveroth, P.A. Munoz Rojas, Complex variable semianalytical method for sensitivity evaluation in nonlinear path dependent problems: applications to periodic truss materials, in: P.A. Munoz Rojas (ed.) Computational Modeling, Optimization and Manufacturing Simulation of Advanced Engineering Materials, Book Series: Advanced Structured Materials, 49, 2016, pp.239-270.

DOI: 10.1007/978-3-319-04265-7_9

Google Scholar

[39] B. Mochnacki, E. Majchrzak, Sensitivity of the skin tissue on the activity of external heat sources, CMES - Comp. Model. Eng. 4 (2003) 431-438.

Google Scholar

[40] M. Jasiński, Modelling of tissue thermal injury formation process with application of direct sensitivity method, J. Theor. App. Mech. - Pol. 52 (2014) 947-957.

DOI: 10.15632/jtam-pl.52.4.947

Google Scholar

[41] E. Majchrzak, B. Mochnacki, Sensitivity analysis and inverse problems in bio-heat transfer modelling, CAMES 13 (2006) 85-108.

Google Scholar

[42] B. Mochnacki, M. Ciesielski, Sensitivity of transient temperature field in domain of forearm insulated by protective clothing with respect to perturbations of external boundary heat flux, Bull. Pol. Acad. Sci., Tech. Sci. 64 (2016) 591-598.

DOI: 10.1515/bpasts-2016-0066

Google Scholar

[43] E. Majchrzak, Ł. Turchan, G. Kałuża, Sensitivity analysis of temperature field in the heated tissue with respect to the dual-phase-lag model parameters, in M. Kleiber, T. Burczyński, K. Wilde, J. Gorski, K. Winkelmann, Ł. Smakosz (eds.): Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues, CRC Press, 2016, pp.371-374.

DOI: 10.1201/b20057-80

Google Scholar

[44] M. Jasiński, E. Majchrzak, L. Turchan, Numerical analysis of the interactions between laser and soft tissues using generalized dual-phase lag model, Appl. Math. Model. 40 (2016) 750-762.

DOI: 10.1016/j.apm.2015.10.025

Google Scholar

[45] E. Majchrzak, B. Mochnacki, Dual-phase lag equation. Stability conditions of a numerical algorithm based on the explicit scheme of the finite difference method, J. Appl. Math. Comput. Mech. 15 (2016) 89-96.

DOI: 10.17512/jamcm.2016.3.09

Google Scholar

[46] H.W. Huang, Z.P. Chen, R.B. Roemer, A counter current vascular network model of heat transfer in tissues, J. Biomech. Eng. 118 (1996) 120-129.

DOI: 10.1115/1.2795937

Google Scholar