Moisture Diffusion in Natural Rubber/Bentonite Nanocomposites: Effect of Clay Filler Treatments

Article Preview

Abstract:

This study investigated the effects of clay filler treatments on moisture diffusion in natural rubber (NR)/bentonite nanocomposites. Four types of clay filler treatments were considered: sodium activation using sodium chloride (NaCl), ion exchange using hexadecyldimethylamine (HDA) chloride salt, modification using coco diethanolamide (CDEA), and wet grinding using ethanol as medium. A 24 full factorial design of experiment (DOE) was utilized during clay filler treatments. The measured vulcanization characteristics of rubber specimens show the NR nanocomposites to be stiffer than unfilled NR, with very small differences in scorch and curing times. The moisture uptake of rubber specimens at 80°C is linear with square root of immersion time showing Fickian behavior. The rate of moisture uptake (slope of moisture uptake versus square root time) was measured. Determination of factor effects and analysis of variance show all clay filler treatments except for wet grinding significantly increase the rate of moisture uptake of NR nanocomposites. When compared to unfilled NR, only wet grinding of clay is found effective in lowering moisture diffusion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

124-132

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.E. El-Nashar, N.M. Ahmed and A.A. Yehia: Mater. Design Vol. 34 (2012), p.137.

Google Scholar

[2] S. Chakraborty, R. Sengupta, S. Dasgupta, R. Mukhopadhyay, S. Bandyopadhyay, M. Joshi and S.C. Ameta: J. Appl. Polym. Science Vol. 113 (2009), p.1316.

Google Scholar

[3] S. Chakraborty, R. Sengupta, S. Dasgupta, R. Mukhopadhyay, S. Bandyopadhyay, M. Joshi and S.C Ameta: Polym. Eng. Science Vol. 49 (2009), p.1279.

DOI: 10.1002/pen.21367

Google Scholar

[4] S. Chakraborty, S. Kar, S. Dasgupta, R. Mukhopadhyay, S. Bandyopadhyay, M. Joshi and S.C. Ameta: Polym. Testing Vol. 29 (2010), p.679.

Google Scholar

[5] R. Sengupta, S. Chakraborty, S. Bandyopadhyay, S. Dasgupta, R. Mukhopadhyay, K. Auddy and A.S. Deuri: Polym. Eng. Science Vol. 47 (2007), p. (1956).

DOI: 10.1002/pen.20921

Google Scholar

[6] A. Ciesielski: An Introduction to Rubber Technology (Rapra Technology Limited, Shawbury 1999).

Google Scholar

[7] J.C. Dai and J.T. Huang: Appl. Clay Science Vol. 15 (1999), p.51.

Google Scholar

[8] Y. Wang, L. Zhang, C. Tang and D. Yu: J. Appl. Polym. Science Vol. 78 (2000), p.1879.

Google Scholar

[9] S. Varghese and J. Karger-Kocsis: Polymer Vol. 44 (2003), p.4921.

Google Scholar

[10] A. Das, K.W. Stöckelhuber, R. Jurk, D. Jehnichen and G. Heinrich: Appl. Clay Science Vol. 51 (2011), p.117.

Google Scholar

[11] S. Rooj, A. Das, K.W. Stöckelhuber, U. Reuter and G. Heinrich: Macromo. Mater. Engineering Vol. 297 (2012), p.369.

Google Scholar

[12] S. Rooj, A. Das, K.W. Stöckelhuber, N. Mukhopadhyay, A.R. Bhattacharyya, D. Jehnichen and G. Heinrich: Appl. Clay Science Vol. 67 (2012), p.50.

DOI: 10.1016/j.clay.2012.03.005

Google Scholar

[13] G.D. Moggridge, N.K. Lape, C. Yang and E.L. Cussler: Prog. Org. Coatings Vol. 46 (2003), p.231.

Google Scholar

[14] N.K. Lape, E.E. Nuxoll and E.L. Cussler: J. Membr. Science Vol. 236 (2004), p.29.

Google Scholar

[15] X. Chen and T.D. Papathanasiou: J. Plast. Film Sheeting Vol. 23 (2007), p.319.

Google Scholar

[16] E.L. Cussler: Diffus. Fundamentals Vol. 6 (2007), p.72.

Google Scholar

[17] C. Yang, W. Smyrl and E.L. Cussler: J. Membr. Science Vol. 231 (2004), p.1.

Google Scholar

[18] W. Falla, M. Mulski and E.L. Cussler: J. Membr. Science Vol. 119 (1996), p.129.

Google Scholar

[19] J. DeRocher, B. Gettelfinger, J. Wang, E. Nuxoll and E.L. Cussler: J. Membr. Science Vol. 254 (2005), p.21.

Google Scholar

[20] E.L. Cussler, S. Hughes, W. Ward and R. Aris: J. Membr. Science Vol. 38 (1988), p.161.

Google Scholar

[21] G. Fredrickson and J. Bicerano: J. Chem. Physics Vol. 110 (1999), p.2181.

Google Scholar

[22] W. Brydges, S. Gulati and G. Baum: J. Mater. Science Vol. 10 (1975), p. (2044).

Google Scholar

[23] C. Swannack, C. Cox, A. Liakos and D. Hirt: J. Membr. Science Vol. 263 (2005), p.47.

Google Scholar

[24] B. Pajarito and M. Kubouchi: J. Chem. Eng. Japan Vol. 46 (2013), p.18.

Google Scholar

[25] B.B. Pajarito, M. Kubouchi, T. Sakai and S. Aoki: J. Soc. Mater. Sci. Japan Vol. 61 (2012), p.860.

Google Scholar

[26] D.E.O. Santiago, B.B. Pajarito, W.F.F. Mangaccat, M.R.M. Tigue and M.T. Tipton: In AIP Conf. Proceedings Vol. 1736 (2016), p.020047.

Google Scholar

[27] Z.R. Lazic: Design of Experiments in Chemical Engineering (Wiley-VCH Verlag GmbH & Co, KGaA 2004).

Google Scholar

[28] A. Ananoria and B. Pajarito: Adv. Mater. Research Vol. 1125 (2015), p.55.

Google Scholar

[29] A.M. Joseph, B. George, K.N. Madhusoodanan and R. Alex: Rubber Science Vol. 28 (2015), p.82.

Google Scholar

[30] J. Crank: The Mathematics of Diffusion (Clarendon, Oxford 1975).

Google Scholar