A Mathematical Formulation for Calculating Temperature Dependent Friction Coefficient Values: Application in Friction Stir Welding (FSW)

Article Preview

Abstract:

High rotational motion from the welding tool generates a significant amount of the heat during friction stir welding (FSW). Basically, during FSW the heat is mostly coming from the frictional force between the tool shoulder and the plates. Therefore, a precise calculation of the friction coefficient can increase the accuracy of the finite element analysis (FEA) of the process. However, researchers have applied constant values, and that causes a gap between the reality and the simulated model especially after the welding plunging step. In this study, a mathematical formulation is proposed in order to calculate the temperature dependent values of the friction coefficient and also to explore the influence of the temperature in the friction coefficient. To solve the governing equations of the process, the MATLAB® software is used. The results indicate that, from 25°C to the AA 6061-T6 melting point (580°C), the values of the friction coefficient fall steadily in a range of 0.207089 to 0.000582. Furthermore, the material shear stress and the material yield stress decrease consistently as the temperature rises. Consequently, the influence of the temperature in the contact input parameters and the material properties are discussed in detail and a good correlation with the published results is achieved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-82

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Lu, H.-P. Wang, A. B. Murphy, and B. E. Carlson, Analysis of energy flow in gas metal arc welding processes through self-consistent three-dimensional process simulation,, International Journal of Heat and Mass Transfer, vol. 68, pp.215-223, (2014).

DOI: 10.1016/j.ijheatmasstransfer.2013.09.021

Google Scholar

[2] N. Dialami, M. Chiumenti, M. Cervera, C. A. de Saracibar, J.-P. Ponthot, and P. Bussetta, Numerical simulation and visualization of material flow in friction stir welding via particle tracing,, in Numerical Simulations of Coupled Problems in Engineering, ed: Springer, 2014, pp.157-169.

DOI: 10.1007/978-3-319-06136-8_7

Google Scholar

[3] Z. Saldi, A. Kidess, S. Kenjereš, C. Zhao, I. Richardson, and C. Kleijn, Effect of enhanced heat and mass transport and flow reversal during cool down on weld pool shapes in laser spot welding of steel,, International Journal of Heat and Mass Transfer, vol. 66, pp.879-888, (2013).

DOI: 10.1016/j.ijheatmasstransfer.2013.07.085

Google Scholar

[4] B. Meyghani, M. Awang, S. Emamian, and N. M. Khalid, Developing a Finite Element Model for Thermal Analysis of Friction Stir Welding by Calculating Temperature Dependent Friction Coefficient,, in 2nd International Conference on Mechanical, Manufacturing and Process Plant Engineering, M. Awang, Ed., ed Singapore: Springer Singapore, 2017, pp.107-126.

DOI: 10.1007/978-981-10-4232-4_9

Google Scholar

[5] H. Schmidt and J. Hattel, A local model for the thermomechanical conditions in friction stir welding,, Modelling and simulation in materials science and engineering, vol. 13, p.77, (2004).

DOI: 10.1088/0965-0393/13/1/006

Google Scholar

[6] Z. Zhang and H. Zhang, A fully coupled thermo-mechanical model of friction stir welding,, The International Journal of Advanced Manufacturing Technology, vol. 37, pp.279-293, (2008).

DOI: 10.1007/s00170-007-0971-6

Google Scholar

[7] Z. Zhang, Y. Liu, and J. Chen, Effect of shoulder size on the temperature rise and the material deformation in friction stir welding,, The International Journal of Advanced Manufacturing Technology, vol. 45, pp.889-895, (2009).

DOI: 10.1007/s00170-009-2034-7

Google Scholar

[8] Z. Zhang, Comparison of two contact models in the simulation of friction stir welding process,, Journal of Materials Science, vol. 43, pp.5867-5877, (2008).

DOI: 10.1007/s10853-008-2865-x

Google Scholar

[9] X. He, F. Gu, and A. Ball, A review of numerical analysis of friction stir welding,, Progress in Materials Science, vol. 65, pp.1-66, (2014).

DOI: 10.1016/j.pmatsci.2014.03.003

Google Scholar

[10] H. B. Schmidt and J. H. Hattel, Thermal modelling of friction stir welding,, Scripta Materialia, vol. 58, pp.332-337, (2008).

DOI: 10.1016/j.scriptamat.2007.10.008

Google Scholar

[11] Y. J. Chao, X. Qi, and W. Tang, Heat transfer in friction stir welding—experimental and numerical studies,, Journal of manufacturing science and engineering, vol. 125, pp.138-145, (2003).

DOI: 10.1115/1.1537741

Google Scholar

[12] C. Chen and R. Kovacevic, Finite element modeling of friction stir welding—thermal and thermomechanical analysis,, International Journal of Machine Tools and Manufacture, vol. 43, pp.1319-1326, (2003).

DOI: 10.1016/s0890-6955(03)00158-5

Google Scholar

[13] M. Song and R. Kovacevic, Thermal modeling of friction stir welding in a moving coordinate system and its validation,, International Journal of Machine Tools and Manufacture, vol. 43, pp.605-615, (2003).

DOI: 10.1016/s0890-6955(03)00022-1

Google Scholar

[14] K. J. Colligan and R. S. Mishra, A conceptual model for the process variables related to heat generation in friction stir welding of aluminum,, Scripta Materialia, vol. 58, pp.327-331, (2008).

DOI: 10.1016/j.scriptamat.2007.10.015

Google Scholar

[15] K. Kumar, C. Kalyan, S. V. Kailas, and T. S. Srivatsan, An investigation of friction during friction stir welding of metallic materials,, Materials and Manufacturing Processes, vol. 24, pp.438-445, (2009).

DOI: 10.1080/10426910802714340

Google Scholar

[16] M. Awang, V. Mucino, Z. Feng, and S. David, Thermo-mechanical modeling of friction stir spot welding (FSSW) process: use of an explicit adaptive meshing scheme,, SAE Technical Paper 0148-7191, (2005).

DOI: 10.4271/2005-01-1251

Google Scholar

[17] M. Song and R. Kovacevic, Numerical and experimental study of the heat transfer process in friction stir welding,, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 217, pp.73-85, (2003).

DOI: 10.1243/095440503762502297

Google Scholar

[18] M. Khandkar, J. A. Khan, and A. P. Reynolds, Prediction of temperature distribution and thermal history during friction stir welding: input torque based model,, Science and Technology of Welding & Joining, vol. 8, pp.165-174, (2003).

DOI: 10.1179/136217103225010943

Google Scholar

[19] C. Hamilton, S. Dymek, and A. Sommers, A thermal model of friction stir welding in aluminum alloys,, International journal of machine tools and manufacture, vol. 48, pp.1120-1130, (2008).

DOI: 10.1016/j.ijmachtools.2008.02.001

Google Scholar

[20] C. Hamilton, A. Sommers, and S. Dymek, A thermal model of friction stir welding applied to Sc-modified Al–Zn–Mg–Cu alloy extrusions,, International Journal of Machine Tools and Manufacture, vol. 49, pp.230-238, (2009).

DOI: 10.1016/j.ijmachtools.2008.11.004

Google Scholar

[21] O. Lorrain, J. Serri, V. Favier, H. Zahrouni, and M. El Hadrouz, A contribution to a critical review of friction stir welding numerical simulation,, Journal of mechanics of materials and structures, vol. 4, pp.351-369, (2009).

DOI: 10.2140/jomms.2009.4.351

Google Scholar

[22] P. Ulysse, Three-dimensional modeling of the friction stir-welding process,, International Journal of Machine Tools and Manufacture, vol. 42, pp.1549-1557, (2002).

DOI: 10.1016/s0890-6955(02)00114-1

Google Scholar

[23] P. Colegrove and H. Shercliff, CFD modelling of friction stir welding of thick plate 7449 aluminium alloy,, Science and Technology of Welding and Joining, vol. 11, pp.429-441, (2006).

DOI: 10.1179/174329306x107700

Google Scholar

[24] P. Heurtier, M. Jones, C. Desrayaud, J. H. Driver, F. Montheillet, and D. Allehaux, Mechanical and thermal modelling of friction stir welding,, Journal of Materials Processing Technology, vol. 171, pp.348-357, (2006).

DOI: 10.1016/j.jmatprotec.2005.07.014

Google Scholar

[25] H. Schmidt, J. Hattel, and J. Wert, An analytical model for the heat generation in friction stir welding,, Modelling and Simulation in Materials Science and Engineering, vol. 12, p.143, (2003).

DOI: 10.1088/0965-0393/12/1/013

Google Scholar

[26] A. Gerlich, M. Yamamoto, and T. North, Strain rates and grain growth in Al 5754 and Al 6061 friction stir spot welds,, Metallurgical and materials transactions A, vol. 38, pp.1291-1302, (2007).

DOI: 10.1007/s11661-007-9155-0

Google Scholar

[27] H. N. B. Schmidt, T. Dickerson, and J. H. Hattel, Material flow in butt friction stir welds in AA2024-T3,, Acta Materialia, vol. 54, pp.1199-1209, (2006).

DOI: 10.1016/j.actamat.2005.10.052

Google Scholar

[28] H.-H. Cho, S.-T. Hong, J.-H. Roh, H.-S. Choi, S. H. Kang, R. J. Steel, et al., Three-dimensional numerical and experimental investigation on friction stir welding processes of ferritic stainless steel,, Acta Materialia, vol. 61, pp.2649-2661, (2013).

DOI: 10.1016/j.actamat.2013.01.045

Google Scholar

[29] R. Nandan, G. Roy, T. Lienert, and T. Debroy, Three-dimensional heat and material flow during friction stir welding of mild steel,, Acta Materialia, vol. 55, pp.883-895, (2007).

DOI: 10.1016/j.actamat.2006.09.009

Google Scholar

[30] A. Arora, R. Nandan, A. P. Reynolds, and T. DebRoy, Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments,, Scripta Materialia, vol. 60, pp.13-16, (2009).

DOI: 10.1016/j.scriptamat.2008.08.015

Google Scholar

[31] R. Nandan, T. DebRoy, and H. Bhadeshia, Recent advances in friction-stir welding–process, weldment structure and properties,, Progress in Materials Science, vol. 53, pp.980-1023, (2008).

DOI: 10.1016/j.pmatsci.2008.05.001

Google Scholar

[32] H. Su, C. S. Wu, M. Bachmann, and M. Rethmeier, Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding,, Materials & Design, vol. 77, pp.114-125, (2015).

DOI: 10.1016/j.matdes.2015.04.012

Google Scholar

[33] H. Su, C. Wu, A. Pittner, and M. Rethmeier, Thermal energy generation and distribution in friction stir welding of aluminum alloys,, Energy, vol. 77, pp.720-731, (2014).

DOI: 10.1016/j.energy.2014.09.045

Google Scholar

[34] G. R. Johnson and W. H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures,, in Proceedings of the 7th International Symposium on Ballistics, 1983, pp.541-547.

Google Scholar

[35] T. W. Wright, The physics and mathematics of adiabatic shear bands: Cambridge University Press, (2002).

Google Scholar

[36] M. Ilangovan, S. R. Boopathy, and V. Balasubramanian, Effect of tool pin profile on microstructure and tensile properties of friction stir welded dissimilar AA 6061–AA 5086 aluminium alloy joints,, Defence Technology, vol. 11, pp.174-184, (2015).

DOI: 10.1016/j.dt.2015.01.004

Google Scholar

[37] S. Emamian, M. Awang, P. Hussai, B. Meyghani, and A. Zafar, INFLUENCES OF TOOL PIN PROFILE ON THE FRICTION STIR WELDING OF AA6061,, (2006).

Google Scholar

[38] F. D. Guide, An Engineering Study of Coefficient of Friction of Materials and Coatings,, Slide-chart presentation from General Magnaplate Corp., Linden, NJ, (1988).

Google Scholar

[39] H. Kong and M. Ashby, Engineering Department Report,, Cambridge University, Cambridge, United Kingdom, (1991).

Google Scholar

[40] K. C. Mills, Recommended values of thermophysical properties for selected commercial alloys: Woodhead Publishing, (2002).

Google Scholar

[41] X. Zhang, B. Xiao, and Z. Ma, A transient thermal model for friction stir weld. Part I: the model,, Metallurgical and Materials Transactions A, vol. 42, pp.3218-3228, (2011).

DOI: 10.1007/s11661-011-0729-5

Google Scholar

[42] S. B. Aziz, M. W. Dewan, D. J. Huggett, M. A. Wahab, A. M. Okeil, and T. W. Liao, Impact of Friction Stir Welding (FSW) process parameters on thermal modeling and heat generation of aluminum alloy joints,, Acta Metallurgica Sinica (English Letters), vol. 29, pp.869-883, (2016).

DOI: 10.1007/s40195-016-0466-2

Google Scholar

[43] W. Arbegast and P. Hartley, Friction stir weld technology development at Lockheed Martin Michoud Space System--an overview,, ASM International, Trends in Welding Research(USA), pp.541-546, (1999).

Google Scholar

[44] X. Zhang, B. Xiao, and Z. Ma, A transient thermal model for friction stir weld. Part II: Effects of weld conditions,, Metallurgical and Materials Transactions A, vol. 42, pp.3229-3239, (2011).

DOI: 10.1007/s11661-011-0730-z

Google Scholar

[45] W. Tang, X. Guo, J. McClure, L. Murr, and A. Nunes, Heat input and temperature distribution in friction stir welding,, Journal of Materials Processing and Manufacturing Science, vol. 7, pp.163-172, (1998).

DOI: 10.1106/55tf-pf2g-jbh2-1q2b

Google Scholar