[1]
F. Lu, H.-P. Wang, A. B. Murphy, and B. E. Carlson, Analysis of energy flow in gas metal arc welding processes through self-consistent three-dimensional process simulation,, International Journal of Heat and Mass Transfer, vol. 68, pp.215-223, (2014).
DOI: 10.1016/j.ijheatmasstransfer.2013.09.021
Google Scholar
[2]
N. Dialami, M. Chiumenti, M. Cervera, C. A. de Saracibar, J.-P. Ponthot, and P. Bussetta, Numerical simulation and visualization of material flow in friction stir welding via particle tracing,, in Numerical Simulations of Coupled Problems in Engineering, ed: Springer, 2014, pp.157-169.
DOI: 10.1007/978-3-319-06136-8_7
Google Scholar
[3]
Z. Saldi, A. Kidess, S. Kenjereš, C. Zhao, I. Richardson, and C. Kleijn, Effect of enhanced heat and mass transport and flow reversal during cool down on weld pool shapes in laser spot welding of steel,, International Journal of Heat and Mass Transfer, vol. 66, pp.879-888, (2013).
DOI: 10.1016/j.ijheatmasstransfer.2013.07.085
Google Scholar
[4]
B. Meyghani, M. Awang, S. Emamian, and N. M. Khalid, Developing a Finite Element Model for Thermal Analysis of Friction Stir Welding by Calculating Temperature Dependent Friction Coefficient,, in 2nd International Conference on Mechanical, Manufacturing and Process Plant Engineering, M. Awang, Ed., ed Singapore: Springer Singapore, 2017, pp.107-126.
DOI: 10.1007/978-981-10-4232-4_9
Google Scholar
[5]
H. Schmidt and J. Hattel, A local model for the thermomechanical conditions in friction stir welding,, Modelling and simulation in materials science and engineering, vol. 13, p.77, (2004).
DOI: 10.1088/0965-0393/13/1/006
Google Scholar
[6]
Z. Zhang and H. Zhang, A fully coupled thermo-mechanical model of friction stir welding,, The International Journal of Advanced Manufacturing Technology, vol. 37, pp.279-293, (2008).
DOI: 10.1007/s00170-007-0971-6
Google Scholar
[7]
Z. Zhang, Y. Liu, and J. Chen, Effect of shoulder size on the temperature rise and the material deformation in friction stir welding,, The International Journal of Advanced Manufacturing Technology, vol. 45, pp.889-895, (2009).
DOI: 10.1007/s00170-009-2034-7
Google Scholar
[8]
Z. Zhang, Comparison of two contact models in the simulation of friction stir welding process,, Journal of Materials Science, vol. 43, pp.5867-5877, (2008).
DOI: 10.1007/s10853-008-2865-x
Google Scholar
[9]
X. He, F. Gu, and A. Ball, A review of numerical analysis of friction stir welding,, Progress in Materials Science, vol. 65, pp.1-66, (2014).
DOI: 10.1016/j.pmatsci.2014.03.003
Google Scholar
[10]
H. B. Schmidt and J. H. Hattel, Thermal modelling of friction stir welding,, Scripta Materialia, vol. 58, pp.332-337, (2008).
DOI: 10.1016/j.scriptamat.2007.10.008
Google Scholar
[11]
Y. J. Chao, X. Qi, and W. Tang, Heat transfer in friction stir welding—experimental and numerical studies,, Journal of manufacturing science and engineering, vol. 125, pp.138-145, (2003).
DOI: 10.1115/1.1537741
Google Scholar
[12]
C. Chen and R. Kovacevic, Finite element modeling of friction stir welding—thermal and thermomechanical analysis,, International Journal of Machine Tools and Manufacture, vol. 43, pp.1319-1326, (2003).
DOI: 10.1016/s0890-6955(03)00158-5
Google Scholar
[13]
M. Song and R. Kovacevic, Thermal modeling of friction stir welding in a moving coordinate system and its validation,, International Journal of Machine Tools and Manufacture, vol. 43, pp.605-615, (2003).
DOI: 10.1016/s0890-6955(03)00022-1
Google Scholar
[14]
K. J. Colligan and R. S. Mishra, A conceptual model for the process variables related to heat generation in friction stir welding of aluminum,, Scripta Materialia, vol. 58, pp.327-331, (2008).
DOI: 10.1016/j.scriptamat.2007.10.015
Google Scholar
[15]
K. Kumar, C. Kalyan, S. V. Kailas, and T. S. Srivatsan, An investigation of friction during friction stir welding of metallic materials,, Materials and Manufacturing Processes, vol. 24, pp.438-445, (2009).
DOI: 10.1080/10426910802714340
Google Scholar
[16]
M. Awang, V. Mucino, Z. Feng, and S. David, Thermo-mechanical modeling of friction stir spot welding (FSSW) process: use of an explicit adaptive meshing scheme,, SAE Technical Paper 0148-7191, (2005).
DOI: 10.4271/2005-01-1251
Google Scholar
[17]
M. Song and R. Kovacevic, Numerical and experimental study of the heat transfer process in friction stir welding,, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 217, pp.73-85, (2003).
DOI: 10.1243/095440503762502297
Google Scholar
[18]
M. Khandkar, J. A. Khan, and A. P. Reynolds, Prediction of temperature distribution and thermal history during friction stir welding: input torque based model,, Science and Technology of Welding & Joining, vol. 8, pp.165-174, (2003).
DOI: 10.1179/136217103225010943
Google Scholar
[19]
C. Hamilton, S. Dymek, and A. Sommers, A thermal model of friction stir welding in aluminum alloys,, International journal of machine tools and manufacture, vol. 48, pp.1120-1130, (2008).
DOI: 10.1016/j.ijmachtools.2008.02.001
Google Scholar
[20]
C. Hamilton, A. Sommers, and S. Dymek, A thermal model of friction stir welding applied to Sc-modified Al–Zn–Mg–Cu alloy extrusions,, International Journal of Machine Tools and Manufacture, vol. 49, pp.230-238, (2009).
DOI: 10.1016/j.ijmachtools.2008.11.004
Google Scholar
[21]
O. Lorrain, J. Serri, V. Favier, H. Zahrouni, and M. El Hadrouz, A contribution to a critical review of friction stir welding numerical simulation,, Journal of mechanics of materials and structures, vol. 4, pp.351-369, (2009).
DOI: 10.2140/jomms.2009.4.351
Google Scholar
[22]
P. Ulysse, Three-dimensional modeling of the friction stir-welding process,, International Journal of Machine Tools and Manufacture, vol. 42, pp.1549-1557, (2002).
DOI: 10.1016/s0890-6955(02)00114-1
Google Scholar
[23]
P. Colegrove and H. Shercliff, CFD modelling of friction stir welding of thick plate 7449 aluminium alloy,, Science and Technology of Welding and Joining, vol. 11, pp.429-441, (2006).
DOI: 10.1179/174329306x107700
Google Scholar
[24]
P. Heurtier, M. Jones, C. Desrayaud, J. H. Driver, F. Montheillet, and D. Allehaux, Mechanical and thermal modelling of friction stir welding,, Journal of Materials Processing Technology, vol. 171, pp.348-357, (2006).
DOI: 10.1016/j.jmatprotec.2005.07.014
Google Scholar
[25]
H. Schmidt, J. Hattel, and J. Wert, An analytical model for the heat generation in friction stir welding,, Modelling and Simulation in Materials Science and Engineering, vol. 12, p.143, (2003).
DOI: 10.1088/0965-0393/12/1/013
Google Scholar
[26]
A. Gerlich, M. Yamamoto, and T. North, Strain rates and grain growth in Al 5754 and Al 6061 friction stir spot welds,, Metallurgical and materials transactions A, vol. 38, pp.1291-1302, (2007).
DOI: 10.1007/s11661-007-9155-0
Google Scholar
[27]
H. N. B. Schmidt, T. Dickerson, and J. H. Hattel, Material flow in butt friction stir welds in AA2024-T3,, Acta Materialia, vol. 54, pp.1199-1209, (2006).
DOI: 10.1016/j.actamat.2005.10.052
Google Scholar
[28]
H.-H. Cho, S.-T. Hong, J.-H. Roh, H.-S. Choi, S. H. Kang, R. J. Steel, et al., Three-dimensional numerical and experimental investigation on friction stir welding processes of ferritic stainless steel,, Acta Materialia, vol. 61, pp.2649-2661, (2013).
DOI: 10.1016/j.actamat.2013.01.045
Google Scholar
[29]
R. Nandan, G. Roy, T. Lienert, and T. Debroy, Three-dimensional heat and material flow during friction stir welding of mild steel,, Acta Materialia, vol. 55, pp.883-895, (2007).
DOI: 10.1016/j.actamat.2006.09.009
Google Scholar
[30]
A. Arora, R. Nandan, A. P. Reynolds, and T. DebRoy, Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments,, Scripta Materialia, vol. 60, pp.13-16, (2009).
DOI: 10.1016/j.scriptamat.2008.08.015
Google Scholar
[31]
R. Nandan, T. DebRoy, and H. Bhadeshia, Recent advances in friction-stir welding–process, weldment structure and properties,, Progress in Materials Science, vol. 53, pp.980-1023, (2008).
DOI: 10.1016/j.pmatsci.2008.05.001
Google Scholar
[32]
H. Su, C. S. Wu, M. Bachmann, and M. Rethmeier, Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding,, Materials & Design, vol. 77, pp.114-125, (2015).
DOI: 10.1016/j.matdes.2015.04.012
Google Scholar
[33]
H. Su, C. Wu, A. Pittner, and M. Rethmeier, Thermal energy generation and distribution in friction stir welding of aluminum alloys,, Energy, vol. 77, pp.720-731, (2014).
DOI: 10.1016/j.energy.2014.09.045
Google Scholar
[34]
G. R. Johnson and W. H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures,, in Proceedings of the 7th International Symposium on Ballistics, 1983, pp.541-547.
Google Scholar
[35]
T. W. Wright, The physics and mathematics of adiabatic shear bands: Cambridge University Press, (2002).
Google Scholar
[36]
M. Ilangovan, S. R. Boopathy, and V. Balasubramanian, Effect of tool pin profile on microstructure and tensile properties of friction stir welded dissimilar AA 6061–AA 5086 aluminium alloy joints,, Defence Technology, vol. 11, pp.174-184, (2015).
DOI: 10.1016/j.dt.2015.01.004
Google Scholar
[37]
S. Emamian, M. Awang, P. Hussai, B. Meyghani, and A. Zafar, INFLUENCES OF TOOL PIN PROFILE ON THE FRICTION STIR WELDING OF AA6061,, (2006).
Google Scholar
[38]
F. D. Guide, An Engineering Study of Coefficient of Friction of Materials and Coatings,, Slide-chart presentation from General Magnaplate Corp., Linden, NJ, (1988).
Google Scholar
[39]
H. Kong and M. Ashby, Engineering Department Report,, Cambridge University, Cambridge, United Kingdom, (1991).
Google Scholar
[40]
K. C. Mills, Recommended values of thermophysical properties for selected commercial alloys: Woodhead Publishing, (2002).
Google Scholar
[41]
X. Zhang, B. Xiao, and Z. Ma, A transient thermal model for friction stir weld. Part I: the model,, Metallurgical and Materials Transactions A, vol. 42, pp.3218-3228, (2011).
DOI: 10.1007/s11661-011-0729-5
Google Scholar
[42]
S. B. Aziz, M. W. Dewan, D. J. Huggett, M. A. Wahab, A. M. Okeil, and T. W. Liao, Impact of Friction Stir Welding (FSW) process parameters on thermal modeling and heat generation of aluminum alloy joints,, Acta Metallurgica Sinica (English Letters), vol. 29, pp.869-883, (2016).
DOI: 10.1007/s40195-016-0466-2
Google Scholar
[43]
W. Arbegast and P. Hartley, Friction stir weld technology development at Lockheed Martin Michoud Space System--an overview,, ASM International, Trends in Welding Research(USA), pp.541-546, (1999).
Google Scholar
[44]
X. Zhang, B. Xiao, and Z. Ma, A transient thermal model for friction stir weld. Part II: Effects of weld conditions,, Metallurgical and Materials Transactions A, vol. 42, pp.3229-3239, (2011).
DOI: 10.1007/s11661-011-0730-z
Google Scholar
[45]
W. Tang, X. Guo, J. McClure, L. Murr, and A. Nunes, Heat input and temperature distribution in friction stir welding,, Journal of Materials Processing and Manufacturing Science, vol. 7, pp.163-172, (1998).
DOI: 10.1106/55tf-pf2g-jbh2-1q2b
Google Scholar