[1]
E. Atzeni, A. Salmi, Economics of additive manufacturing for end-usable metal parts. Int J Adv Manuf Technol 62 (2012) 1147-1155.
DOI: 10.1007/s00170-011-3878-1
Google Scholar
[2]
L. Hitzler, M. Merkel, P. Freytag, Design of a subframe to integrate an electric drivetrain in existing vehicles. Mat-wiss u Werkstofftech 46 (2015) 454-461.
DOI: 10.1002/mawe.201500421
Google Scholar
[3]
A. Gebhardt, F.-M. Schmidt, J.-S. Hötter, W. Sokalla, P. Sokalla, Additive Manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry. Physics Procedia 5 (2010) 543-549.
DOI: 10.1016/j.phpro.2010.08.082
Google Scholar
[4]
F. Alifui-Segbaya, J. Evans, D. Eggbeer, R. George, Clinical Relevance of laser-sintered Co-Cr alloys for prosthodontic treatments: A Review. Proceedings of the International Conference on Progress in Additive Manufacturing, pp.24-29.
DOI: 10.3850/978-981-09-0446-3_024
Google Scholar
[5]
L. Hitzler, J. Hirsch, B. Heine, M. Merkel, W. Hall, A. Öchsner, On the Anisotropic Mechanical Properties of Selective Laser Melted Stainless Steel. Materials 10 (2017) 1136.
DOI: 10.3390/ma10101136
Google Scholar
[6]
L. Hitzler, C. Janousch, J. Schanz, M. Merkel, B. Heine, F. Mack, W. Hall, A. Öchsner, Direction and location dependency of selective laser melted AlSi10Mg specimens. J Mater Process Technol 243 (2017) 48-61.
DOI: 10.1016/j.jmatprotec.2016.11.029
Google Scholar
[7]
L. Hitzler, J. Hirsch, M. Merkel, W. Hall, A. Öchsner, Position dependent surface quality in Selective Laser Melting. Mat-wiss u Werkstofftech 48 (2017) 327-334.
DOI: 10.1002/mawe.201600742
Google Scholar
[8]
A. Öchsner, Continuum Damage and Fracture Mechanics. Springer, Singapore, (2016).
Google Scholar
[9]
L. Hitzler, J. Hirsch, J. Schanz, B. Heine, M. Merkel, W. Hall, A. Öchsner, Fracture toughness of selective laser melted AlSi10Mg. P I Mech Eng L: J Mat ONLINE FIRST (2017).
DOI: 10.1177/1464420716687337
Google Scholar
[10]
O. Rehme, C. Emmelmann, Reproducibility for properties of selective laser melting products. Proceedings of the Third International WLT-Conference on Lasers in Manufacturing, pp.227-232, (2005).
Google Scholar
[11]
L. Hitzler, C. Janousch, J. Schanz, M. Merkel, F. Mack, A. Öchsner, Non-destructive evaluation of AlSi10Mg prismatic samples generated by Selective Laser Melting: Influence of manufacturing conditions. Mat-wiss u Werkstofftech 47 (2016) 564-581.
DOI: 10.1002/mawe.201600532
Google Scholar
[12]
L. Hitzler, M. Merkel, W. Hall, A. Öchsner, A Review of Metal Fabricated with Powder-Bed Based Additive Manufacturing Techniques: Process, Nomenclature, Materials, Achievable Properties, and its Utilization in the Medical Sector. Adv Eng Mater UNDER REVISION (2017).
DOI: 10.1002/adem.201700658
Google Scholar
[13]
A. Liebisch, M. Merkel, On the numerical simulation of the thermal behavior during the selective laser melting process. Mat-wiss u Werkstofftech 47 (2016) 521-529.
DOI: 10.1002/mawe.201600528
Google Scholar
[14]
J. Trapp, A.M. Rubenchik, G. Guss, M.J. Matthews, In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing. Appl Mater Today 9 (2017) 341-349.
DOI: 10.1016/j.apmt.2017.08.006
Google Scholar
[15]
J.P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann Manuf Techn 56 (2007) 730-759.
DOI: 10.1016/j.cirp.2007.10.004
Google Scholar
[16]
K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, J.P. Kruth, Process optimization and microstructural analysis for selective laser melting of AlSi10Mg. SFF Symposium, Asutin, Texas, USA.
Google Scholar
[17]
S. Kleszczynski, J. zur Jacobsmühlen, J. Sehrt, G. Witt Mechanical Properties of Laser Beam Melting Components Depending on Various Process Errors. In: G.L. Kovács, D. Kochan (eds) Digital Product and Process Development Systems. Springer Berlin Heidelberg, (2013).
DOI: 10.1007/978-3-642-41329-2_16
Google Scholar
[18]
K.G. Prashanth, S. Scudino, T. Maity, J. Das, J. Eckert, Is the energy density a reliable parameter for materials synthesis by selective laser melting? Mater Res Lett (2017) 1-5.
DOI: 10.1080/21663831.2017.1299808
Google Scholar
[19]
U. Scipioni Bertoli, A.J. Wolfer, M.J. Matthews, J.-P.R. Delplanque, J.M. Schoenung, On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting. Mater Des 113 (2017) 331-340.
DOI: 10.1016/j.matdes.2016.10.037
Google Scholar
[20]
C. Teng, H. Gong, A. Szabo, J.J.S. Dilip, K. Ashby, S. Zhang, N. Patil, D. Pal, B. Stucker, Simulating Melt Pool Shape and Lack of Fusion Porosity for Selective Laser Melting of Cobalt Chromium Components. J Manuf Sci Eng 139 (2016) 011009.
DOI: 10.1115/1.4034137
Google Scholar
[21]
A. Takaichi, Suyalatu, T. Nakamoto, N. Joko, N. Nomura, Y. Tsutsumi, S. Migita, H. Doi, S. Kurosu, A. Chiba, N. Wakabayashi, Y. Igarashi, T. Hanawa, Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications. J Mech Behav Biomed Mater 21 (2013).
DOI: 10.1016/j.jmbbm.2013.01.021
Google Scholar
[22]
S&S Scheftner GmbH Dental Alloy MoguCera C. http://scheftner24.de/index.php/download.html?file=tl_files/scheftner/PDF/NEM-Legierungen/NEM-Nichtedelmetall-CoCr-Dentallegierung-MoguCera-C-Flyer-DEU-2016-03-WEB.pdf. Accessed 05/09/(2017).
Google Scholar
[23]
Y.S. Al Jabbari, T. Koutsoukis, X. Barmpagadaki, S. Zinelis, Metallurgical and interfacial characterization of PFM Co-Cr dental alloys fabricated via casting, milling or selective laser melting. Dent Mater 30 (2014) e79-e88.
DOI: 10.1016/j.dental.2014.01.008
Google Scholar
[24]
B. AlMangour, D. Grzesiak, J.-M. Yang, Scanning strategies for texture and anisotropy tailoring during selective laser melting of TiC/316L stainless steel nanocomposites. J Alloys Compd 728 (2017) 424-435.
DOI: 10.1016/j.jallcom.2017.08.022
Google Scholar
[25]
Z. Hu, H. Zhu, H. Zhang, X. Zeng, Experimental investigation on selective laser melting of 17-4PH stainless steel. Opt Lasers Technol 87 (2017) 17-25.
DOI: 10.1016/j.optlastec.2016.07.012
Google Scholar
[26]
T. Vilaro, C. Colin, J.D. Bartout, As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting. Metall Mater Trans A 42A (2011) 3190-3199.
DOI: 10.1007/s11661-011-0731-y
Google Scholar
[27]
S.P. Faure, L. Mercier, P. Didier, R. Roux, J.F. Coulon, S. Garel, J. Trenit, H. Buard, F. Razan, Laser sintering process analysis: Application to chromium-cobalt alloys for dental prosthesis production. ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2012, pp.9-15.
DOI: 10.1115/esda2012-82108
Google Scholar
[28]
S. Yang, D.A. Puleo, O.W. Dillon, I.S. Jawahir, Surface Layer Modifications in Co-Cr-Mo Biomedical Alloy from Cryogenic Burnishing. Procedia Eng 19 (2011) 383-388.
DOI: 10.1016/j.proeng.2011.11.129
Google Scholar
[29]
B. AlMangour, J.-M. Yang, Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing. Mater Des 110 (2016) 914-924.
DOI: 10.1016/j.matdes.2016.08.037
Google Scholar