Correlation between the Energy Input and the Microstructure of Additively Manufactured Cobalt-Chromium

Article Preview

Abstract:

Powder-bed based additive manufacturing techniques are of high interest for the medical sector and recent trial studies have shown their feasibility. Due to the rapid improvements made in the machinery and the related changes in the type and characteristics of the utilized power source, optimizations regarding the fabrication parameters tend to differ amongst various machines. In this study, a parameter optimization was undertaken for a biocompatible dental CoCrMo alloy on a SLM 280HL machine, featuring a 400 W fibre laser. It was shown that the availability of higher laser powers enables a more energy efficient fabrication. Moreover, parameter sets for fast and economic fabrication, as well as for high density and fine-grained microstructure, were defined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-165

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Atzeni, A. Salmi, Economics of additive manufacturing for end-usable metal parts. Int J Adv Manuf Technol 62 (2012) 1147-1155.

DOI: 10.1007/s00170-011-3878-1

Google Scholar

[2] L. Hitzler, M. Merkel, P. Freytag, Design of a subframe to integrate an electric drivetrain in existing vehicles. Mat-wiss u Werkstofftech 46 (2015) 454-461.

DOI: 10.1002/mawe.201500421

Google Scholar

[3] A. Gebhardt, F.-M. Schmidt, J.-S. Hötter, W. Sokalla, P. Sokalla, Additive Manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry. Physics Procedia 5 (2010) 543-549.

DOI: 10.1016/j.phpro.2010.08.082

Google Scholar

[4] F. Alifui-Segbaya, J. Evans, D. Eggbeer, R. George, Clinical Relevance of laser-sintered Co-Cr alloys for prosthodontic treatments: A Review. Proceedings of the International Conference on Progress in Additive Manufacturing, pp.24-29.

DOI: 10.3850/978-981-09-0446-3_024

Google Scholar

[5] L. Hitzler, J. Hirsch, B. Heine, M. Merkel, W. Hall, A. Öchsner, On the Anisotropic Mechanical Properties of Selective Laser Melted Stainless Steel. Materials 10 (2017) 1136.

DOI: 10.3390/ma10101136

Google Scholar

[6] L. Hitzler, C. Janousch, J. Schanz, M. Merkel, B. Heine, F. Mack, W. Hall, A. Öchsner, Direction and location dependency of selective laser melted AlSi10Mg specimens. J Mater Process Technol 243 (2017) 48-61.

DOI: 10.1016/j.jmatprotec.2016.11.029

Google Scholar

[7] L. Hitzler, J. Hirsch, M. Merkel, W. Hall, A. Öchsner, Position dependent surface quality in Selective Laser Melting. Mat-wiss u Werkstofftech 48 (2017) 327-334.

DOI: 10.1002/mawe.201600742

Google Scholar

[8] A. Öchsner, Continuum Damage and Fracture Mechanics. Springer, Singapore, (2016).

Google Scholar

[9] L. Hitzler, J. Hirsch, J. Schanz, B. Heine, M. Merkel, W. Hall, A. Öchsner, Fracture toughness of selective laser melted AlSi10Mg. P I Mech Eng L: J Mat ONLINE FIRST (2017).

DOI: 10.1177/1464420716687337

Google Scholar

[10] O. Rehme, C. Emmelmann, Reproducibility for properties of selective laser melting products. Proceedings of the Third International WLT-Conference on Lasers in Manufacturing, pp.227-232, (2005).

Google Scholar

[11] L. Hitzler, C. Janousch, J. Schanz, M. Merkel, F. Mack, A. Öchsner, Non-destructive evaluation of AlSi10Mg prismatic samples generated by Selective Laser Melting: Influence of manufacturing conditions. Mat-wiss u Werkstofftech 47 (2016) 564-581.

DOI: 10.1002/mawe.201600532

Google Scholar

[12] L. Hitzler, M. Merkel, W. Hall, A. Öchsner, A Review of Metal Fabricated with Powder-Bed Based Additive Manufacturing Techniques: Process, Nomenclature, Materials, Achievable Properties, and its Utilization in the Medical Sector. Adv Eng Mater UNDER REVISION (2017).

DOI: 10.1002/adem.201700658

Google Scholar

[13] A. Liebisch, M. Merkel, On the numerical simulation of the thermal behavior during the selective laser melting process. Mat-wiss u Werkstofftech 47 (2016) 521-529.

DOI: 10.1002/mawe.201600528

Google Scholar

[14] J. Trapp, A.M. Rubenchik, G. Guss, M.J. Matthews, In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing. Appl Mater Today 9 (2017) 341-349.

DOI: 10.1016/j.apmt.2017.08.006

Google Scholar

[15] J.P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann Manuf Techn 56 (2007) 730-759.

DOI: 10.1016/j.cirp.2007.10.004

Google Scholar

[16] K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, J.P. Kruth, Process optimization and microstructural analysis for selective laser melting of AlSi10Mg. SFF Symposium, Asutin, Texas, USA.

Google Scholar

[17] S. Kleszczynski, J. zur Jacobsmühlen, J. Sehrt, G. Witt Mechanical Properties of Laser Beam Melting Components Depending on Various Process Errors. In: G.L. Kovács, D. Kochan (eds) Digital Product and Process Development Systems. Springer Berlin Heidelberg, (2013).

DOI: 10.1007/978-3-642-41329-2_16

Google Scholar

[18] K.G. Prashanth, S. Scudino, T. Maity, J. Das, J. Eckert, Is the energy density a reliable parameter for materials synthesis by selective laser melting? Mater Res Lett (2017) 1-5.

DOI: 10.1080/21663831.2017.1299808

Google Scholar

[19] U. Scipioni Bertoli, A.J. Wolfer, M.J. Matthews, J.-P.R. Delplanque, J.M. Schoenung, On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting. Mater Des 113 (2017) 331-340.

DOI: 10.1016/j.matdes.2016.10.037

Google Scholar

[20] C. Teng, H. Gong, A. Szabo, J.J.S. Dilip, K. Ashby, S. Zhang, N. Patil, D. Pal, B. Stucker, Simulating Melt Pool Shape and Lack of Fusion Porosity for Selective Laser Melting of Cobalt Chromium Components. J Manuf Sci Eng 139 (2016) 011009.

DOI: 10.1115/1.4034137

Google Scholar

[21] A. Takaichi, Suyalatu, T. Nakamoto, N. Joko, N. Nomura, Y. Tsutsumi, S. Migita, H. Doi, S. Kurosu, A. Chiba, N. Wakabayashi, Y. Igarashi, T. Hanawa, Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications. J Mech Behav Biomed Mater 21 (2013).

DOI: 10.1016/j.jmbbm.2013.01.021

Google Scholar

[22] S&S Scheftner GmbH Dental Alloy MoguCera C. http://scheftner24.de/index.php/download.html?file=tl_files/scheftner/PDF/NEM-Legierungen/NEM-Nichtedelmetall-CoCr-Dentallegierung-MoguCera-C-Flyer-DEU-2016-03-WEB.pdf. Accessed 05/09/(2017).

Google Scholar

[23] Y.S. Al Jabbari, T. Koutsoukis, X. Barmpagadaki, S. Zinelis, Metallurgical and interfacial characterization of PFM Co-Cr dental alloys fabricated via casting, milling or selective laser melting. Dent Mater 30 (2014) e79-e88.

DOI: 10.1016/j.dental.2014.01.008

Google Scholar

[24] B. AlMangour, D. Grzesiak, J.-M. Yang, Scanning strategies for texture and anisotropy tailoring during selective laser melting of TiC/316L stainless steel nanocomposites. J Alloys Compd 728 (2017) 424-435.

DOI: 10.1016/j.jallcom.2017.08.022

Google Scholar

[25] Z. Hu, H. Zhu, H. Zhang, X. Zeng, Experimental investigation on selective laser melting of 17-4PH stainless steel. Opt Lasers Technol 87 (2017) 17-25.

DOI: 10.1016/j.optlastec.2016.07.012

Google Scholar

[26] T. Vilaro, C. Colin, J.D. Bartout, As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting. Metall Mater Trans A 42A (2011) 3190-3199.

DOI: 10.1007/s11661-011-0731-y

Google Scholar

[27] S.P. Faure, L. Mercier, P. Didier, R. Roux, J.F. Coulon, S. Garel, J. Trenit, H. Buard, F. Razan, Laser sintering process analysis: Application to chromium-cobalt alloys for dental prosthesis production. ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2012, pp.9-15.

DOI: 10.1115/esda2012-82108

Google Scholar

[28] S. Yang, D.A. Puleo, O.W. Dillon, I.S. Jawahir, Surface Layer Modifications in Co-Cr-Mo Biomedical Alloy from Cryogenic Burnishing. Procedia Eng 19 (2011) 383-388.

DOI: 10.1016/j.proeng.2011.11.129

Google Scholar

[29] B. AlMangour, J.-M. Yang, Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing. Mater Des 110 (2016) 914-924.

DOI: 10.1016/j.matdes.2016.08.037

Google Scholar