Pressure Model for Capillary Tree-Shaped Fractal Networks

Article Preview

Abstract:

Capillary tree networks can be efficiently used for several applications. These trees display the same patterns at different levels of scale, which is a property found in fractal objects. This paper combines a thermodynamic formulation with the geometric characteristics of the tree fractal network, to describe the equilibrium capillary pressure. The model proposed here accounts for, in addition to physical properties of the fluids, the fractal dimension, the scale factor between the size of parent and daughter tubes, and the branching level. The effect of each of these properties on the capillary pressure is also investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

166-170

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Sweijen, H. Aslannejad and S. M. Hassanizadeh; Advances in Water Resources Vol. 107 (2017), p.22.

Google Scholar

[2] J. Zheng, H. Liu, K. Wang and Z. You; Journal of Natural Gas Science and Engineering Vol. 41 (2017), p.7.

Google Scholar

[3] E. Barsotti, S. P. Tan, S. Saraji, M. Piri and J.-H. Chen; Fuel Vol. 184 (2016), p.344.

Google Scholar

[4] J. Kudr, O. Zitka, M. Klimanek, R. Vrba and V. Adam; Sensors and Actuators B: Chemical Vol. (2017), p.578.

DOI: 10.1016/j.snb.2017.02.052

Google Scholar

[5] A. Bera and H. Belha; Journal of Unconventional Oil and Gas Resources Vol. 16 (2016), p.76.

Google Scholar

[6] H. Bagheri and H. Piri-Moghadam; TrAC Trends in Analytical Chemistry Vol. 73 (2015), p.64.

DOI: 10.1016/j.trac.2015.04.025

Google Scholar

[7] L. Gervais, M. Hitzbleck and E. Delamarche; Biosensors and Bioelectronics Vol. 27 (2011), p.64.

Google Scholar

[8] J.-T. Cheng, L. J. Pyrak-Nolte, D. D. Nolte and N. J. Giordano; Geophys. Res. Lett. Vol. 31 (2004), p. L08502.

Google Scholar

[9] M. R. Deinert, J. Y. Parlange and K. B. Cady; Phys. Rev. E Vol. 72 (2005), p.041203.

Google Scholar

[10] A. Bejan, I. Dincer, S. Lorente, A. F. Miguel and A. H. Reis: Porous and Complex Flow Structures in Modern Technologies (Springer, New York 2004).

DOI: 10.1007/978-1-4757-4221-3

Google Scholar

[11] B. B. Mandelbrot: The Fractal Geometry of Nature (W.H. Freeman, New York 1983).

Google Scholar

[12] H. Takayasu: Fractals in Physical Sciences (Manchester University Press, Manchester 1990).

Google Scholar

[13] A. F. Miguel; International Journal of Heat and Mass Transfer Vol. 43 (2000), p.2267.

Google Scholar

[14] V. R. Pepe, L. A. O. Rocha and A. F. Miguel; BioMed Research International Vol. 2017 (2017), p.5284816.

Google Scholar

[15] A. F. Miguel; International Journal of Heat and Mass Transfer Vol. 92 (2016), p.349.

Google Scholar

[16] A. F. Miguel; Journal of Theoretical Biology Vol. 389 (2016), p.101.

Google Scholar