[1]
Caballero FG, Bhadeshia HKDH, Mawella KJA, Jones DG, Brown P, Very strong low temperature bainite, Mater Sci Technol, vol. 18, no. 2, p.79–84, (2002).
DOI: 10.1179/026708301225000725
Google Scholar
[2]
Garcia-Mateo C, Caballero FG, Bhadeshia HKDH., Development of hard bainite, ISIJ Int, vol. 43, no. 12, pp.38-43, (2003).
DOI: 10.2355/isijinternational.43.1238
Google Scholar
[3]
Zhang P, Zhang FC, Yan ZG, Wang TS, Qian LH, Wear property of low-temperature bainite in the surface layer of a carburized low carbon steel, Wear, vol. 271, p.697–704., (2011).
DOI: 10.1016/j.wear.2010.12.025
Google Scholar
[4]
Yang J, Wang TS, Zhang B, Zhang FC., Sliding wear resistance and worn surface microstructure of nanostructured bainitic steel, wear, vol. 81, no. 4, p.282–283, (2012).
DOI: 10.1016/j.wear.2012.02.008
Google Scholar
[5]
C. F. B. H. Garcia-Mateo C, Acceleration of low-temperature bainite, ISIJ Int, vol. 18, no. 2, pp.1-5, (2003).
Google Scholar
[6]
Yoozbashi MN, Yazdani S, Wang TS, Design of a new nanostructured, high-Si bainitic steel with lower cost production, Materials & Design, vol. 32, no. 6, pp.3248-3253, (2011).
DOI: 10.1016/j.matdes.2011.02.031
Google Scholar
[7]
Yang J, Wang TS, Zhang B, Zhang FC, Microstructure and mechanical properties of high-carbon Si–Al-rich steel by low-temperature austempering, Mater Des, vol. 35, no. 17, pp.0-4, (2012).
DOI: 10.1016/j.matdes.2011.08.041
Google Scholar
[8]
Zhao, J.; Wang, T.S.; Lv, B.; Zhang, F. C, Microstructures and mechanical properties of a modified high-C–Cr bearing steel with nano-scaled bainite., Mater. Sci. Eng, vol. 628, p.327–331, (2015).
DOI: 10.1016/j.msea.2014.12.121
Google Scholar
[9]
Singh SB, Bhadeshia HKDH, Estimation of bainite plate-thickness in low-alloy steels, Materials Science and Engineering: A, vol. 245, no. 1, pp.72-79, (1998).
DOI: 10.1016/s0921-5093(97)00701-6
Google Scholar
[10]
Cornide J, Garcia-Mateo C, Capdevila C, Caballero FG, An assessment of the contributing factors to the nanoscale structural refinement of advanced bainitic steels, Journal of Alloys and Compounds, vol. 577, no. 1, pp. S43-S47, (2013).
DOI: 10.1016/j.jallcom.2011.11.066
Google Scholar
[11]
Wang TS, Zhang M, Wang YH, Yang J, Zhang FC., Martensitic transformation behaviour of deformed supercooled austenite, Scripta Materialia, vol. 68, no. 2, pp.162-165, (2013).
DOI: 10.1016/j.scriptamat.2012.10.016
Google Scholar
[12]
Avishan B, Yazdani S, Nedjad SH, Toughness variations in nanostructured bainitic steel, Mater Sci Eng A, vol. 48, no. 10, pp.6-11, (2012).
DOI: 10.1016/j.msea.2012.03.098
Google Scholar
[13]
E 8-04, Annual Book of ASTM Standards, Philadelphia, PA: vol. 03. 01, ASTM, (1999).
Google Scholar
[14]
E23 Annual Book of ASTM Standards, Philadelphia, PA: vol. 14. 01, ASTM, (2000).
Google Scholar
[15]
X.Y. Long, J. Kang, B. Lv, F.C. Zhang, Carbide-free bainite in medium carbon steel, Materials and Design, vol. 64, pp.237-245, (2014).
DOI: 10.1016/j.matdes.2014.07.055
Google Scholar
[16]
Mohamed Soliman, Heinz Palkowski, Microstructure development and mechanical properties of medium carbon carbide-free bainite steels, vol. ICTP Nagoya, 2014, pp.19-24.
DOI: 10.1016/j.proeng.2014.10.148
Google Scholar
[17]
Gong W, Tomota Y, Adachi Y, Paradowska AM, Kelleher JF, Zhang SY, Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel, Acta Mater, pp.42-61, (2013).
DOI: 10.1016/j.actamat.2013.03.041
Google Scholar
[18]
Zi Yong Hou, Di Wu, Shu Xin Zheng, Xiao Long Yang, Zhuang Li, and Yun Bo Xu, Effect of Holding Temperature on Microstructure and Mechanical Properties of High-Strength Multiphase Steel, steel research international, vol. 87, no. 9, p.1203–1212, (2016).
DOI: 10.1002/srin.201500331
Google Scholar
[19]
G. Sidhu, S.D. Bhole, D.L. Chen and E. Essadiqi, An improved model for bainite formation at isothermal temperatures, Scripta Materialia, vol. 64, pp.73-76, (2011).
DOI: 10.1016/j.scriptamat.2010.09.009
Google Scholar
[20]
YI Hai-long, DU Lin-xiu, WANG Guo-dong, LIU Xiang-hua, Influence of Holding Time After Deformation on Bainite Transformation in Niobium Microalloyed Steel, ScienceDirect, vol. 14, no. 5, pp.62-65, (2007).
DOI: 10.1016/s1006-706x(07)60076-4
Google Scholar
[21]
Yanbing Guoa, Kai Fenga, b, Fenggui Lua, b, Ke Zhanga, b, Zhuguo Li, eyed Reza Elmi Hosseini, Effects of isothermal heat treatment on nanostructured bainite morphology and microstructures in laser cladded coatings, Applied Surface Science, vol. 357, pp.309-316, (2015).
DOI: 10.1016/j.apsusc.2015.08.132
Google Scholar
[22]
Inoue T, Kimura Y, Ochiai S, Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel, Sci Technol Adv Mater, (2012).
DOI: 10.1088/1468-6996/13/3/035005
Google Scholar
[23]
Bhadeshia HKDH, Honeycombe SR, Steels, Oxford: Elsevier Ltd, (2006).
Google Scholar
[24]
Ahmed Shash, Mohamed K. El-Fawkhry, Sherif Ali Abd El Rahman, Iman S. Elmahallawi, Taha Mattar, Improvement of Mechanical Properties and Structure Modifications of Low Carbon Steel by Inoculations with Nano-Size Silicon Nitride, Journal of Nano Research, Vol. 47, pp.24-32.
DOI: 10.4028/www.scientific.net/jnanor.47.24
Google Scholar
[25]
Mohamed Kamal El-Fawkhry, Ahmed Shash, Sherif Ali, Hassan Bahaa and Taha Mattar, Enhancement of pearlitic structure through inoculation with nano-size silicon carbide, Int. J. Nanoparticles, Vol. 7, Nos. 3/4, (2014).
DOI: 10.1504/ijnp.2014.067607
Google Scholar