Control of Particle Size and Morphology of MOF-199 Crystals via a Reaction-Diffusion Framework

Article Preview

Abstract:

A reaction-diffusion framework (RDF) is used to synthesize and control the size and morphology of single crystals of metal-organic framework-199 (MOF-199). The framework consists of diffusing copper ions (Cu2+, outer electrolyte) into a hydrogel medium containing the organic linker, 1,3,5-benzenetricarboxylic acid (BTC, inner electrolyte). The resulting supersaturation gradient, and its nonlinear coupling with nucleation and growth kinetics, provides means to control the crystal size, distrubution and morphology along the diffusion flux. This method is rapid, efficient, scalable, and environmentally friendly. By using this method we demonstrate how assorted experimental parameters, such as temperature, concentrations, and nature of the gel matrix can be easily tuned to produce different particle size distributions and various morphologies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-47

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi: Science Vol. 341 (2013), pp.1230444-12.

Google Scholar

[2] L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp: Chem. Rev. Vol. 112 (2012), pp.1105-1125.

DOI: 10.1021/cr200324t

Google Scholar

[3] C.V. McGuire, R.S. Forgan: Chem. Commun. Vol. 51 (2015), pp.5199-5217.

Google Scholar

[4] A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha: Nat. Rev. Mater. Vol. 1 (2016), pp.1-15.

Google Scholar

[5] O.M. Yaghi, M. O'Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim: Nature Vol. 423 (2003), pp.705-714.

DOI: 10.1038/nature01650

Google Scholar

[6] A. Macchioni, Ion pairing in transition-metal organometallic chemistry, Chem. Rev. Vol. 105 (2005), p.2039-(2074).

DOI: 10.1021/cr0300439

Google Scholar

[7] X. Huang, Y. Chen, Z. Lin, X. Ren, Y. Song, Z. Xu, X. Dong, X. Li, C. Hu, B. Wang: Chem. Commun. Vol. 50 (2014), pp.2624-2627.

Google Scholar

[8] V.I. Isaeva, E.V. Belyaeva, A.N. Fitch, V.V. Chernyshev, S.N. Klyamkin, L.M. Kustov: Cryst. Growth Des. Vol. 13 (2013), pp.5305-5315.

DOI: 10.1021/cg401106z

Google Scholar

[9] A. Coskun, M. Hmadeh, G. Barin, F. Gándara, Q. Li, E. Choi, N.L. Strutt, D.B. Cordes, A.M. Slawin, J.F. Stoddart: Angew. Chem. Int. Ed. (English) Vol. 51 (2012), pp.2160-2163.

DOI: 10.1002/anie.201107873

Google Scholar

[10] H. Deng, S. Grunder, K.E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A.C. Whalley, Z. Liu, S. Asahina: Science Vol. 336 (2012), pp.1018-1023.

DOI: 10.1126/science.1220131

Google Scholar

[11] G.A. Al Akhrass, M. Ammar, H. El-Rassy, M. Al-Ghoul: RSC Adv. Vol. 6 (2016), pp.3433-3439.

DOI: 10.1039/c5ra22692a

Google Scholar

[12] P. Zhao, G.I. Lampronti, G.O. Lloyd, M.T. Wharmby, S. b. Facq, A.K. Cheetham, S.A. Redfern: Chem. Mat. Vol. 26 (2014), pp.1767-1769.

DOI: 10.1021/cm500407f

Google Scholar

[13] D. Saliba, A. Ezzeddine, A. -H. Emwas, N.M. Khashab, M. Al-Ghoul: Cryst. Growth Des. Vol. 16 (2016), pp.4327-4335.

Google Scholar

[14] D. Saliba, A. Ezzeddine, R. Sougrat, N.M. Khashab, M. Hmadeh, M. Al‐Ghoul: ChemSusChem Vol. 9 (2016), pp.800-805.

DOI: 10.1002/cssc.201600088

Google Scholar