Growth Kinetics and Mechanical Characterization of a Hard Boron Coating on a Tool Steel

Article Preview

Abstract:

The mechanical characteristics are determined to a FeB/Fe2B coating applied in AISI L6 steel tool and blades make to cut paper. The thermochemical treatment was applied at temperatures of 1173, 1223 and 1273 K with permanence time of 0.5, 2 and 3 h for each temperature. The diffusion coefficient and activation energy for each phase is obtained for this boron coating on an AISI L6 steel. HRC test were made to establish the type of adherence (qualitative) and comparing with the VDI 3198 standard and the results were obtaining optimal classification of HF1-HF2 in condition for 3h of the three temperatures. The result by nanoidentation show hardness of 1000 - 2000 HV as well as the Young's modulus for each present phase of the coating. Through micrographs (SEM) are showing thicknesses up to 79.52 ± 18.82 μm for FeB and 97.80 ± 20.01μm for Fe2B, a morphology sawn ́s type is evidence. Through EDS and x-ray diffraction are used to show the chemical elements formed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-34

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Mindivan, Procedia Engineering, Vol. 68 (2013), p.710 – 715.

Google Scholar

[2] M.A. Doñu Ruiz, N. López Perrusquia, G. Urriolagoitia Sosa, L. H. Hernández Gómez and D. Sánchez Huerta, Def. Diff. Forum, Vol 365 (2015), pp.148-153.

DOI: 10.4028/www.scientific.net/ddf.365.148

Google Scholar

[3] F. Xie, X. Wang and J. Pan, Vacuum, Vol. 141 (2017), p.166–169.

Google Scholar

[4] K. Holmberg and A. Eldemire FME Transactions, Vol. 43 (2015), pp.181-185.

Google Scholar

[5] H. Zarepour, A.F. Tehrani, D. Karimi and S. Amini, Vol. 187–188 (2007), p.711–714.

Google Scholar

[6] Y. Haopeng, W. Xiaochun, C. Guanghui and Y. Zhe, Surface and Coatings Technology, Vol. 307A, (2016), p.506–516.

Google Scholar

[7] S. Taktak, Materials & Design, Vol. 28 (2007), p.1836–1843.

Google Scholar

[8] V. Sista, O. Kahvecioglu, O.L. Eryilmaz, A. Erdemir and S. Timur, Thin Solid Films, Vol. 520 (2011), p.1582–1588.

DOI: 10.1016/j.tsf.2011.07.057

Google Scholar

[9] N. López Perrusquia, M.A. Doñu Ruiz, D. Sánchez Huerta, T. de la Mora Ramírez, J.V. Cortes Suarez, Def. Diff. Forum, Vol. 371 (2017), pp.1-7.

DOI: 10.4028/www.scientific.net/ddf.371.1

Google Scholar

[10] C. Martini, G. Palombarini and M. Carbucicchio, J. Mat. Sci., Vol. 39 (2004), pp.933-937.

Google Scholar

[11] C.M. Brakman, A.W.J. Gommers, and E.J. Mittemeijer. J. Mater. Res, 1989, 4, p.1354–1370.

Google Scholar

[12] M. Kulka, N. Makuch, A. Pertek, L. Maldzinski, J. Solid State Chem. Vol. 199 (2013), p.196 – 203.

Google Scholar

[13] M. Keddam, Z. Nait Abdellah, M. Kulka and R. Chegroune, Acta Physica Polonica A, Vol. 128 (2015), p.740 – 745.

DOI: 10.12693/aphyspola.128.740

Google Scholar

[14] T. De la Mora Ramírez, D. Sánchez Huerta, N. López Perrusquia, M.A. Doñu Ruiz, E. A. Cerrillo Moreno and V. J. Cortes Suarez, Def. Diff. Forum, Vol. 365 (2015), pp.142-147.

DOI: 10.4028/www.scientific.net/ddf.365.142

Google Scholar

[15] K. Genel, Vacuum, Vol. 80 (2006), pp.451-457.

Google Scholar

[16] W. Fichtl, Materials in Engineering, Vol. 2 (1981), pp.276-286.

Google Scholar

[17] C. Badini, C. Gianoglio, and G. Pradelli, Surf. Coat. Technol., Vol. 30 (1987), pp.157-170.

Google Scholar