A Coupling Interface between Phase-Field Model with Finite Interface Dissipation and CALPHAD Thermodynamic and Atomic Mobility Databases

Article Preview

Abstract:

A coupling interface between phase-field model with finite interface dissipation and the CALPHAD (CALculation of PHAse Diagram) thermodynamic and atomic mobility databases is developed. It robotizes the procedures that provides the composition and temperature dependent properties in multicomponent and multi-phase systems. Based on the developed coupling interface, different CALPHAD properties can be directly coupling in the phase-field simulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

66-73

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Karma, Phase-field formulation for quantitative modeling of alloy solidification, Physical Review Letters 87 (2001) 115701.

DOI: 10.1103/physrevlett.87.115701

Google Scholar

[2] W. J. Boettinger, J. A. Warren, C. Beckermann, A. Karma, Phase-field simulation of solidification, Annual review of materials research 32 (1) (2002) 163-194.

DOI: 10.1146/annurev.matsci.32.101901.155803

Google Scholar

[3] L. Chen, Phase-field models for microstructure evolution, Annual review of materials research 32 (1) (2002) 113-140.

Google Scholar

[4] I. Steinbach, Phase-field models in materials science, Modelling and Simulation in Materials Science and Engineering 17 (7) (2009) 073001.

DOI: 10.1088/0965-0393/17/7/073001

Google Scholar

[5] I. Steinbach, B. Böttger, J. Eiken, N. Warnken, S. G. Fries, Calphad and phase-field modeling: A successful liaison, Journal of Phase Equilibria and Diffusion 28 (1) (2007) 101-106.

DOI: 10.1007/s11669-006-9009-2

Google Scholar

[6] L. Zhang, Y. Du, Phase-field model of finite interface dissipation: A novel way to directly couple with calphad databases, Journal of Phase Equilibria and Diffusion 37 (3) (2016) 259-260.

DOI: 10.1007/s11669-015-0422-2

Google Scholar

[7] I. Steinbach, L. Zhang, M. Plapp, Phase-field model with finite interface dissipation, Acta Materialia 60 (6) (2012) 2689 - 2701.

DOI: 10.1016/j.actamat.2012.01.035

Google Scholar

[8] L. Zhang, I. Steinbach, Phase-field model with finite interface dissipation: Extension to multicomponent multi-phase alloys, Acta Materialia 60 (6) (2012) 2702 - 2710.

DOI: 10.1016/j.actamat.2012.02.032

Google Scholar

[9] L. Zhang, E. V. Danilova, I. Steinbach, D. Medvedev, P. K. Galenko, Diffuse-interface modeling of solute trapping in rapid solidification: Predictions of the hyperbolic phase-field model and parabolic model with finite interface dissipation, Acta Materialia 61 (11) (2013).

DOI: 10.1016/j.actamat.2013.03.042

Google Scholar

[10] J. Tiaden, B. Nestler, H. Diepers, I. Steinbach, The multiphase-field model with an integrated concept for modelling solute diffusion, Physica D: Nonlinear Phenomena 115 (1) (1998) 73 - 86.

DOI: 10.1016/s0167-2789(97)00226-1

Google Scholar

[11] S. G. Kim, W. T. Kim, T. Suzuki, Phase-field model for binary alloys, Physical Review E 60 (1999) 7186-7197.

DOI: 10.1103/physreve.60.7186

Google Scholar

[12] J. Eiken, B. Böttger, I. Steinbach, Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application, Physical Review E 73 (2006) 066122.

DOI: 10.1103/physreve.73.066122

Google Scholar

[13] L. Zhang, M. Stratmann, Y. Du, B. Sundman, I. Steinbach, Incorporating the calphad sublattice approach of ordering into the phase-field model with finite interface dissipation, Acta Materialia 88 (2015) 156-169.

DOI: 10.1016/j.actamat.2014.11.037

Google Scholar

[14] A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel, v. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, A. Scopatz, Sympy: symbolic computing in python, PeerJ Computer Science 3 (2017).

DOI: 10.7287/peerj.preprints.2083v3

Google Scholar

[15] H. L. Lukas, S. G. Fries, B. Sundman, et al., Computational thermodynamics: the Calphad method, Vol. 131, Cambridge university press Cambridge, (2007).

DOI: 10.1017/cbo9780511804137

Google Scholar

[16] J. Andersson, J. Ågren, Models for numerical treatment of multicomponent diffusion in simple phases, Journal of Applied Physics 72 (4) (1992) 1350-1355.

DOI: 10.1063/1.351745

Google Scholar

[17] Y. Du, S. Liu, L. Zhang, H. Xu, D. Zhao, A. Wang, L. Zhou, An overview on phase equilibria and thermodynamic modeling in multicomponent al alloys: Focusing on the Al-Cu-Fe-Mg- Mn-Ni-Si-Zn system, Calphad 35 (3) (2011) 427 - 445.

DOI: 10.1016/j.calphad.2011.06.007

Google Scholar

[18] L. J. Zhang, D. D. Liu, W. B. Zhang, S. Q. Wang, Y. Tang, N. Ta, M. Wei, Y. Du, A new diffusivity database for multi-component al alloys: focusing on ternary systems and its effect on microstructure evolution during solidification, in: Materials Science Forum, Vol. 794, Trans Tech Publ, 2014, pp.611-616.

DOI: 10.4028/www.scientific.net/msf.794-796.611

Google Scholar