[1]
T. Hayat, F. Shahzad, M. Ayub Analytical solution for the steady flow of the third grade fluid in a porous half space, Applied Mathematical Modelling, 31 (2007): 2424–2432.
DOI: 10.1016/j.apm.2006.09.008
Google Scholar
[2]
T. Hayata, A.H. Kara Couette flow of a third-grade fluid with variable magnetic field, Mathematical and Computer Modelling, 43 (2006): 132–137.
DOI: 10.1016/j.mcm.2004.12.009
Google Scholar
[3]
T. Hayat, A. Shafiq, M. Nawaz, A. Alsaed, MHD axisymmetric flow of third grade fluid between porous disks with heat transfer, Appl. Math. Mech. (Engl. Ed)., 33(6): 749–764 (2012). DOI 10.1007/s10483-012-1584-9.
DOI: 10.1007/s10483-012-1584-9
Google Scholar
[4]
T. Hayat, R. Ellahi, F. M. Mahomed, The Analytical Solutions for Magnetohydrodynamic Flow of a Third Order Fluid in a Porous Medium, Z. Naturforsch, 64a (2009):531 – 539.
DOI: 10.1515/zna-2009-9-1001
Google Scholar
[5]
S.O. Adesanya, Second law analysis for third-grade fluid with variable properties, Journal of Thermodynamics, Volume 2014, Article ID 452168, 8 pages. http://dx.doi.org/10.1155/2014/452168.
DOI: 10.1155/2014/452168
Google Scholar
[6]
S.O. Adesanya, O.D. Makinde, Thermodynamic analysis for a third grade fluid through a vertical channel with internal heat generation, Journal of Hydrodynamics, 27(2)(2015): 264-272.
DOI: 10.1016/s1001-6058(15)60481-4
Google Scholar
[7]
S. O. Adesanya, J.A. Falade, Thermodynamics analysis of hydromagnetic third grade fluid flow through a channel filled with porous medium, Alexandria Engineering Journal, 54, (2015): 615–622.
DOI: 10.1016/j.aej.2015.05.014
Google Scholar
[8]
S. O. Adesanya, J.A. Falade, S. Jangili, O. A. Beg, Irreversibility analysis for reactive third-grade fluid flow and heat transfer with convective wall cooling, Alexandria Engineering Journal (2017) 56, 153–160.
DOI: 10.1016/j.aej.2016.09.017
Google Scholar
[9]
A.M. Siddiqui, A. Zeb, Q.K. Ghori, A.M. Benharbit, Homotopy perturbation method for heat transfer flow of a third grade fluid between parallel plates, Chaos, Solitons and Fractals, 36 (2008) 182–192.
DOI: 10.1016/j.chaos.2006.06.037
Google Scholar
[10]
A.M. Siddiqui, M. Hameed, B.M. Siddiqui, Q.K. Ghori, Use of Adomian decomposition method in the study of parallel plate flow of a third grade fluid, Commun Nonlinear Sci Numer Simulat, 15 (2010): 2388–2399.
DOI: 10.1016/j.cnsns.2009.05.073
Google Scholar
[11]
M. Azimi, A. Azimi, Investigation on the Film Flow of a Third Grade Fluid on an Inclined Plane Using HPM, Mechanics and Mechanical Engineering, 18(1), (2014): 5–10.
Google Scholar
[12]
I.G. Baoku, B.I. Olajuwon, A.O. Mustapha, Heat and mass transfer on a MHD third grade fluid with partial slip flow past an infinite vertical insulated porous plate in a porous medium, International Journal of Heat and Fluid Flow, 40 (2013).
DOI: 10.1016/j.ijheatfluidflow.2013.01.016
Google Scholar
[13]
R. Kandasamy, I. Hashim, A. B. Khamis and I. Muhaimin, Combined heat and mass transfer in MHD free convection from a wedge with ohmic heating and viscous dissipation in the presence of suction or injection, Iranian Journal of Science & Technology, Transaction A, 31(A2)(2007).
Google Scholar
[14]
K.A. Yih, Uniform suction/blowing effect on force convection about wedge. Acta Mech., 128 (1998): 173-181.
DOI: 10.1007/bf01251888
Google Scholar
[15]
S. A. Al-Sanea, Mixed convection heat transfer along a continuously moving heated vertical plate with suction or injection, International Journal of Heat and Mass Transfer, vol. 47(6-7)(2004): 1445–1465, (2004).
DOI: 10.1016/j.ijheatmasstransfer.2003.09.016
Google Scholar
[16]
B. K. Jha and B. Aina, Role of suction/injection on steady fully developed mixed convection flow in a vertical parallel plate microchannel, Ain Shams Engineering Journal, 2016. https://doi.org/10.1016/j.asej.2016.05.001.
DOI: 10.1016/j.asej.2016.05.001
Google Scholar
[17]
N.G. Kafoussias and N.D. Nanousis, Magnetohydrodynamic laminar boundary layer flow over a wedge with suction or injection. Canadian Journal of Physics, 75(1997): 733-745.
DOI: 10.1139/p97-024
Google Scholar
[18]
S.P. Anjali Devi and R. Kandasamy, Effects of heat and mass transfer on MHD laminar boundary layer flow over a wedge with suction or injection. Journal of Energy Heat and Mass Transfer, 23(2001): 167-175.
DOI: 10.1016/s0735-1933(03)00109-x
Google Scholar
[19]
M.E. Ali and K. Al-Salem, The effect of suction or injection on the boundary layer flows induced by continuous surfaces stretched with prescribed skin friction, Meccanica, 48(2013): 1587–1597, DOI 10.1007/s11012-012-9687-2.
DOI: 10.1007/s11012-012-9687-2
Google Scholar
[20]
I. J. Uwanta andM.M. Hamza, Effect of suction/injection on unsteady hydromagnetic convective flow of reactive viscous fluid between vertical porous plates with thermal diffusion, International Scholarly Research Notices, Volume 2014, http://dx.doi.org/10.1155/2014/980270.
DOI: 10.1155/2014/980270
Google Scholar
[21]
S. K. Jena and M. N. Mathur, Free convection in the laminar boundary layer flow of a thermomicropolar fluid past a vertical flat plate with suction/injection, Acta Mechanica, 42(3-4) (1982): 227–238.
DOI: 10.1007/bf01177194
Google Scholar
[22]
A.A. Opanuga, J.A. Gbadeyan, and S.A. Iyase, Second law analysis of hydromagnetic couple stress fluid embedded in a non-Darcian porous medium, IAENG International Journal of Applied Mathematics, 47(3)(2017):287-294.
Google Scholar
[23]
A. A. Opanuga, J. A. Gbadeyan, and S. A. Iyase, Thermodynamics Analysis of Radiative Hydromagnetic Couple Stress Fluid through a Channel,, Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering 2017, 5-7 July, 2017, London, U.K., pp.90-101.
Google Scholar
[24]
A.A. Opanuga, O.O. Agboola, H.I. Okagbue, J.G. Oghonyon, Solution of differential equations by three semi-analytical techniques, International Journal of Applied Engineering Research, 10(18)(2015): 39168-39174.
Google Scholar
[25]
A.A. Opanuga, E.A. Owoloko and H.I. Okagbue (2017).
Google Scholar
[26]
O. O. Agboola, A.A. Opanuga, J.A. Gbadeyan, Solution of third order ordinary differential equations using differential transform method, Global Journal of Pure and Applied Mathematics, 11( 4)(2015): 2511-2517.
Google Scholar
[27]
A.A. Opanuga, O.O. Agboola and H.I. Okagbue, Approximate solution of multipoint boundary value problems, Journal of Engineering and Applied Sciences, 10(4)(2015): 85- 89.
Google Scholar
[28]
J. H. He, Variational Iteration Method for Autonomous Ordinary Differential Systems, Applied Mathematics and Computation, 114(2-3) (2000): 115-123.
DOI: 10.1016/s0096-3003(99)00104-6
Google Scholar
[29]
A.M. Wazwaz, (2001). The numerical solution of fifth order boundary value problems by the decomposition method. Journal of Computational and Applied Mathematics, 136(2001): 259-270.
DOI: 10.1016/s0377-0427(00)00618-x
Google Scholar
[30]
A. A. Opanuga, H. I. Okagbue, and O. O. Agboola, Application of Semi-Analytical Technique for Solving Thirteenth Order Boundary Value Problem,, Lecture Notes inEngineering and Computer Science: Proceedings of The World Congress on Engineering and Computer Science 2017, 25-27 October, 2017, San Francisco, USA, pp.145-148.
DOI: 10.1007/978-981-13-0746-1_11
Google Scholar
[31]
A.M. Wazwaz, (2001). The numerical solution of sixth-order boundary value problems by modified decomposition method. Appl. Math. Comput, 118(2001): 311-325.
DOI: 10.1016/s0096-3003(99)00224-6
Google Scholar
[32]
A. Bejan, Second law analysis in heat transfer, Energy int. J., 15(1980): 721-732.
Google Scholar
[33]
A. Bejan, Second law analysis in heat transfer and thermal design, Adv. Heat Transfer, 15(1982): 1-58.
DOI: 10.1016/s0065-2717(08)70172-2
Google Scholar
[34]
A.O. Ajibade, B.K. Jha, and A. Omame, Entropy generation under the effect of suction/ injection, Applied Mathematical Modelling, 35(2011): 4630–4646.
DOI: 10.1016/j.apm.2011.03.027
Google Scholar
[35]
S. O. Adesanya, S.O. Kareem, J.A. Falade and S.A. Arekete, Entropy generation analysis for a reactive couple stress fluid flow through a channel saturated with porous material, Energy, 93(2015): 1239-1245.
DOI: 10.1016/j.energy.2015.09.115
Google Scholar
[36]
A.A. Opanuga, H.I. Okagbue, O.O. Agboola and O.F. Imaga, Entropy generation analysis of buoyancy effect on hydromagnetic Poiseuille flow with internal heat generation. Defect and Diffusion Forum, 378(2017): 102-112.
DOI: 10.4028/www.scientific.net/ddf.378.102
Google Scholar
[37]
A.A. Opanuga, H.I. Okagbue, O.O. Agboola (2017).
Google Scholar
[38]
S. Das and R. N. Jana, Entropy generation due to MHD flow in a porous channel with Navier slip, Ain Shams Engineering Journal, 5(2014): 575-584.
DOI: 10.1016/j.asej.2013.11.005
Google Scholar
[39]
H. Pop and W. Watanabe, The effect of suction or injection in the boundary layer flow and heat transfer on a continuous moving surface, Technische Mechanik, 13(1992): 49-54.
Google Scholar
[40]
I. J. Uwanta and M.M. Hamza, Effect of Suction/Injection on Unsteady Hydromagnetic Convective Flow of Reactive Viscous Fluid between Vertical Porous Plates with Thermal Diffusion, Hindawi Publishing Corporation, International Scholarly Research Notices, Volume 2014, Article ID 980270, 14 pages http://dx.doi.org/10.1155/2014/980270.
DOI: 10.1155/2014/980270
Google Scholar
[41]
A. S. Eegunjobi and O. D. Makinde, Effects of Navier Slip on Entropy Generation in a Porous Channel with Suction/Injection, Journal of Thermal Science and Technology, 7(4)(2012): 522-535.
DOI: 10.1299/jtst.7.522
Google Scholar
[42]
A. O. Ajibade, B.K. Jha, A. Omame, Entropy generation under the effect of suction/injection, Applied Mathematical Modelling, 35 (2011): 4630–4646.
DOI: 10.1016/j.apm.2011.03.027
Google Scholar
[43]
S. O. Adesanya and O. D. Makinde (2015c), Effects of couple stresses on entropy generation rate in a porous channel with convective heating, Comp. Appl. Math. 34, 293–307.
DOI: 10.1007/s40314-014-0117-z
Google Scholar