[1]
A. C. Yunus, Heat Transfer: A Practical Approach, McGraw-Hill, New York, (2002).
Google Scholar
[2]
R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York, (2007).
Google Scholar
[3]
J. H. Liennard IV and J. H. Liennard V, A Heat Transfer Textbook, Cambridge, Massachusetts, U.S.A., (2000).
Google Scholar
[4]
D. A. Nield, and A. Bejan, Convection in porous media,, Springer, New York, (2006).
Google Scholar
[5]
D. B. Hans and K. Stephan, Heat and mass transfer, Springer Berlin Heidelberg, New York, (2006).
Google Scholar
[6]
J. Elder, Steady free convection in a porous medium heated from below,, Journal of Fluid Mechanics, vol. 1, no. 1, pp.29-48, (1967).
DOI: 10.1017/s0022112067000023
Google Scholar
[7]
B. Kozanoglu, and J. Lopez, Thermal boundary layer and the characteristic length on natural convection over a horizontal plate,, Heat Mass Transfer, vol. 43, pp.333-339, (2007).
DOI: 10.1007/s00231-006-0114-x
Google Scholar
[8]
Massimo Corcione, Natural convection heat transfer above heated horizontal surfaces," 5th WSEAS Int. Conf. on Heat and Mass transfer (HMT,08), Acapulco, Mexico, pp.206-211, (2008).
Google Scholar
[9]
B. I. Olajuwon, Flow and natural convection heat transfer in a power law fluid past a vertical plate with heat generation,, International Journal of Nonlinear Science, vol. 7, no. 1, pp.50-56, (2009).
Google Scholar
[10]
J. M. Lee, M. Y. Ha, and H. S. Yoon, Natural convection in a square enclosure with a circular cylinder at different horizontal and diagonal locations., International Journal of Heat and Mass Transfer, vol. 53, pp.5905-5919, (2010).
DOI: 10.1016/j.ijheatmasstransfer.2010.07.043
Google Scholar
[11]
Shou-Guang Yao, Luo-Bin Duan, Zhe-Shu Ma and Xin-Wang Jia, The study of natural convection heat transfer in a partially porous cavity based on LBM, The Open Fuels and Energy Science Journal, vol. 7, pp.88-93, (2014).
DOI: 10.2174/1876973x01407010088
Google Scholar
[12]
K. Javaherdeh, Mehrzad Mirzaei Nejad, M. Moslemi, Natural convection heat and mass transfer in MHD fluid flow past a moving vertical plate with variable surface temperature and concentration in a porous medium,,Engineering Science and Technology, an International Journal, vol. 18, pp.423-431, (2015).
DOI: 10.1016/j.jestch.2015.03.001
Google Scholar
[13]
L. Roberts, On the melting of a semi-infinite body placed in a warm stream of air,, Journal of Fluid Mechanics, vol. 4, pp.505-528, (1958).
DOI: 10.1017/s002211205800063x
Google Scholar
[14]
M. Epstein, and D. H. Cho, Melting heat transfer in steady laminar flow over a flat plate,, Journal of Heat transfer, vol. 98, no. 3, pp.531-533, (1976).
DOI: 10.1115/1.3450595
Google Scholar
[15]
M. Kazmierczak, D. Poulikakos, and D. Sadowski, Melting of a vertical plate in porous medium controlled by forced convection of a dissimilar fluid,, Int. Comm. Heat Mass Transfer, vol. 14, pp.507-517, (1987).
DOI: 10.1016/0735-1933(87)90015-7
Google Scholar
[16]
Chi Tien and Yin-Chao Yen, The effect of melting on forced convection heat transfer,, Journal of Applied Meteorology, vol. 4, pp.523-527, (1965).
DOI: 10.1175/1520-0450(1965)004<0523:teomof>2.0.co;2
Google Scholar
[17]
A. Ishak, R. Nazar, N. Bachok, and I. Pop, Melting heat transfer in steady laminar flow over a moving surface,, Heat Mass Transfer, vol. 46, no. 4, pp.463-468, (2010).
DOI: 10.1007/s00231-010-0592-8
Google Scholar
[18]
T. Hayat, Z. Iqbal, M. Mustafa, and A. A. Hendi, Melting heat transfer in the stagnation-point flow of third grade fluid past a stretching sheet with viscous dissipation,, Thermal Science, vol. 17, no. 3, pp.865-875, (2013).
DOI: 10.2298/tsci110405119h
Google Scholar
[19]
A. J. Chamkha, S. E. Ahmed, and A. S. Aloraier, Melting and radiation effects on mixed convection from a vertical surface embedded in a non-Newtonian fluid saturated non-Darcy porous medium for aiding and opposing external flows,, International Journal of the Physical Sciences, vol. 5(7), pp.1212-1224, (2010).
DOI: 10.36884/jafm.7.03.19339
Google Scholar
[20]
T. Hayat, M. Rafiq, B. Ahmad, and H. Yasmin, Effect of melting heat transfer on peristalsis in the presence of thermal radiation and Joule heating,, International Journal of Biomathematics, vol. 8, no. 6, pp.1550073-20, (2015).
DOI: 10.1142/s1793524515500734
Google Scholar
[21]
Reda G. Abdel-Rahman, M. M. Khader, and Ahmed M. Megahed, Melting phenomenon in magnetohydrodynamics steady flow and heat transfer over a moving surface in the presence of thermal radiation,, Chin. Phys. B, 2013, vol. 3, pp.030202-6, (2013).
DOI: 10.1088/1674-1056/22/3/030202
Google Scholar
[22]
F. Mabood, R. G. Abdel-Rahman, and G. Lorenzini, Effect of melting heat transfer and thermal radiation on casson fluid flow in porous medium over moving surface with magnetohydrodynamics,, Journal of Engineering Thermophysics, vol. 25, no. 4, pp.536-547, (2016).
DOI: 10.1134/s1810232816040111
Google Scholar
[23]
A. M. Subhas, Jayashree Sanamani, Melting heat transfer in MHD boundary layer stagnationpoint flow towards a stretching sheet with thermal radiation,, Mechanics, Materials Science and Engineering, pp.97-104, (2015).
Google Scholar
[24]
S. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC, Boca Raton, FL, USA, (2003).
Google Scholar
[25]
B. Siva Kumar Reddy, K. V. Surya Narayana Rao, and R.Bhuvana Vijaya, HAM on MHD convective flow of a third grade fluid through porous medium during wire coating analysis with hall effects,, Materials Science and Engineering, 225, 012268, (2017).
DOI: 10.1088/1757-899x/225/1/012268
Google Scholar
[26]
Z. Abbasa, S. Vahdatia, F. Ismaila, and A. K. Dizicheh, Application of Homotopy analysis method for linear integro-differential equations,, International Mathematical Forum, vol. 5, no. 5, pp.237-249, (2010).
Google Scholar
[27]
R. Ellahi, and S. Afzal, Effects of variable viscosity in a third grade fluid with porous medium: An analytic solution,, Communications in Nonlinear Science and Numerical Simulation, vol. 14, pp.2056-2072, (2009).
DOI: 10.1016/j.cnsns.2008.05.006
Google Scholar
[28]
H. Jafari and M. Alipour, Solution of the Davey-Stewartson equation using Homotopy analysis method,, Nonlinear Analysis: Modelling and Control, vol. 15, no. 4, pp.423-433, (2010).
DOI: 10.15388/na.15.4.14313
Google Scholar
[29]
V. Ananthaswamy and C. G. lakshmi, Analytical expressions of the variable viscosity MHD Couette flow with permeable walls using Homotopy analysis method, IJAS, vol. 1, no. 2, pp.41-66, (2016).
Google Scholar
[30]
A. C. Cogley, W. G. Vincenti, and S. E. Giles, Differential approximation for near equilibrium flow of a non-gray gas,, American Institute of Aeronautics and Astronautics, vol. 6, pp.551-553, (1968).
Google Scholar