[1]
O. D. Makinde, Z. H. Khan, W. A. Khan, M. S. Tshehla, Magneto hemodynamics of nanofluid with heat and mass transfer in a slowly varying symmetrical channel, Inter J. of Eng Rese in Africa. 28 (2017) 118-141.
DOI: 10.4028/www.scientific.net/jera.28.118
Google Scholar
[2]
J. Prakash, O. D. Makinde, Radiative heat transfer to blood flow through a stenotic artery in the presence of erythrocytes and magnetic field, Lat Ameri Appli Resea. 41 (2011) 273-277.
Google Scholar
[3]
D. Derong, G. Peiqi, B. Wenboa. Numerical investigation of heat transfer characteristic of fixed planar elastic tube bundles, J of Energy Conversion and Management. 103 (2015) 859-870.
DOI: 10.1016/j.enconman.2015.06.082
Google Scholar
[4]
T.M. Squires, S.R. Quake. Micro-fluidics: fluid physics at the nanoliter scale , Reviews of modern physics. 77 (2005) 977–1026.
DOI: 10.1103/revmodphys.77.977
Google Scholar
[5]
L. Zhang, W. Xu, J. Long, Z. Lei. Surface roughening analysis of cold drawn tube based on macro–micro coupling finite element method, J of Materials Processing Technology. 224 (2015) 189-199.
DOI: 10.1016/j.jmatprotec.2015.05.009
Google Scholar
[6]
A. Matin. Main Gas pipelines: Fracture Resistance Assessment of Pipe, J of Mechanics Engineering and Automation. 3 (2013) 127-140.
Google Scholar
[7]
A. Milani, A. Abbas. Multiscale modeling and performance analysis of evacuated tube collectors for solar water heaters using diffuse flat reflector , Journal of renewable energy. 86 (2016) 360-374.
DOI: 10.1016/j.renene.2015.08.013
Google Scholar
[8]
M. Alimohammadi, J.M. Sherwood, M. Karimpour, O.Agu, S. Balabani, V. Diaz-Zuccarini. Aortic dissection simulation models for clinical support: fluid-structure interaction vs rigid wall model, J of BioMedical Engineering. (2015).
DOI: 10.1186/s12938-015-0032-6
Google Scholar
[9]
R.W. Ogden, C.A.J Schulze-Bauer. Phenomenological and structural aspects of the mechanical response of arteries, J of Mechanics in Medecine and Biology. 46 (2000) 125–140.
DOI: 10.1115/imece2000-1926
Google Scholar
[10]
A. Ghasemi, N.K.R. Kevlahan. The role of Reynolds number in the fluid-elastic instability of tube arrays, J of Fluids and Structures. 73 (2017) 16-36.
DOI: 10.1016/j.jfluidstructs.2017.05.004
Google Scholar
[11]
A. Mallios, B. Bouraak, K. Zannis, N. Borenstein, M. Combesa. A New Experimental Animal Protocol for the Direct Viewing of Endovascular Interventions Involving the Ascending Aorta and Aortic Arch, EJVES Extra. 25 (2013) e11-e13.
DOI: 10.1016/j.ejvsextra.2012.11.003
Google Scholar
[12]
L. Xiao T. Fan, F.A. Sun, X. Deng. Numerical simulation of nucleotide transport in the human thoracic aorta, J of Biomechanics. 46 (2013) 819-827.
DOI: 10.1016/j.jbiomech.2012.11.009
Google Scholar
[13]
A.C. Benim, A. Nahavandi, A. Assmann, D. Schubert, P. Feindt, S.H. Suh. Simulation of blood flow in human aorta with emphasis on outlet boundary conditions, J of Applied Mathematical Modelling. 35 (2011) 3175–3188.
DOI: 10.1016/j.apm.2010.12.022
Google Scholar
[14]
O. Prakash, O. D. Makinde, S. P. Singh, N. Jain, D. Kumar, Effects of stenosis on non-Newtonian flow of blood in blood vessels, Inter J. of Biomath. 8 (2015) No. 1, 1550010 (13pages).
DOI: 10.1142/s1793524515500102
Google Scholar
[15]
R. Patne, D. Gitibabu, V. Shankar. Consistent formulations for stability of fluid flow through deformable channels and tubes, J. of fluid Mechanics. 87(2017) 31-66.
DOI: 10.1017/jfm.2017.485
Google Scholar
[16]
O. Eugenio, Structural Analysis with The Finite Element Method. Linear Statics. Vol 1. Basic and Solids, First ed., CIMNE, Spain, (2009).
Google Scholar
[17]
L. John, JR. Giuliani. A general formulation of the thin shell approximation for axisymmetric, hypersonic, hydromagnetic flows, The astrophysical journal. 256 (1982) 624-636.
DOI: 10.1086/159939
Google Scholar
[18]
V.V. Novozhilov, J.M.R. Radok, Thin Shell Theory, Second ed., Springer, Netherlands, (2014).
Google Scholar
[19]
L. Serge, Mécanique Des Structures Tome 1: Solides Elastiques, Plaques et Coque, Second ed., Cépaduès, France, (2005).
Google Scholar
[20]
S. Taha. The flow of Newtonian and power law fluids in elastic tubes, International Journal of Non-Linear Mechanics. 67 (2014) 245–250.
DOI: 10.1016/j.ijnonlinmec.2014.09.013
Google Scholar
[21]
J. Leibinger, M. Dumbser, U. Iben, I. Wayand. A path-conservative Osher-type scheme for axially symmetric compressible flows in flexible visco-elastic tubes, Journal Applied Numerical Mathematics. 105 (2016) 47-63.
DOI: 10.1016/j.apnum.2016.02.001
Google Scholar
[22]
H. Demiray. Solitary waves in prestressed elastic tubes, Bulletin of Mathematical Biology. 58 (1996) 939-955.
DOI: 10.1007/bf02459491
Google Scholar
[23]
M. Alimohammadi, J. M. Sherwood, M. Karimpour, O. Agu, S. Balabani, V. Diaz- Zuccarini. Aortic dissection simulation models for clinical support: fluid-structure interaction vs. rigid wall models, Biomedical Engineering Online. (2015).
DOI: 10.1186/s12938-015-0032-6
Google Scholar
[24]
R. Fattori, P. Cao , P. De Rango, M. Czerny, A. Evangelista, C. Nienaber, H. Rousseau, M. Shepens. Interdisciplinary expert consensus document on management of type B aortic dissection, J. of the American College of Cardiology. 61(2013).
DOI: 10.1016/j.jacc.2012.11.072
Google Scholar
[25]
I.M Nordon, R.J. Hinchliffe , I.M Loftus, R.A Morgan, M.M Thompson. Management of acute aortic syndrome and chronic aortic dissection, J. of CardioVascular and Interventional Radiology. 34(2011)890-902.
DOI: 10.1007/s00270-010-0028-3
Google Scholar
[26]
A.K. Thukkani, S. Kinlay. Endovascular Intervention for Peripheral Artery Disease, Circulation Research. 116 (2015) 1599-1613.
DOI: 10.1161/circresaha.116.303503
Google Scholar
[27]
P. Luchini, M. Lupo and A. Pozzi. Unsteady stokes flow in a distensible pipe, J. of Applied Mathematics and Mechanics (ZAMM). 71 (1991) 367-378.
DOI: 10.1002/zamm.19910711002
Google Scholar
[28]
O. D. Makinde, Effect of variable viscosity on arterial blood flow, Far East J. Appl. Maths. 4 (2000) 43-58.
Google Scholar
[29]
O. D. Makinde, Chebyshev collocation approach to stability of blood flows in a large artery, Afric J. of Biotech. 11 (2012) 9881-9887.
Google Scholar
[30]
A. Redheuil, W. C. Yu , E. Mousseaux, A. A. Harouni, N. Kachenoura, C. O. Wu, D. Bluemke, J. A.C. lima, Age-related changes in aortic arch geometry: relationship with proximal aortic function and left ventricular mass and remodeling, J Am Coll Cardiol. 58 (2011).
DOI: 10.1016/j.jacc.2011.06.012
Google Scholar
[31]
P. Reymonda, P. Crosettob, S. Deparisb, A. Quarteronib, N. Stergiopulosa. Physiological simulation of blood flow in the aorta: Comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models, J. of Medical Engineering & Physics. 35 (2013).
DOI: 10.1016/j.medengphy.2012.08.009
Google Scholar
[32]
M. Pilarczyk, A. Rygula, A. Kaczor, L. Mateuszuk, E. Maslak, S. Chlopicki, M. Baranska. A novel approach to investigate vascular wall in 3D: Combined Raman spectroscopy and atomic force microscopy for aorta en face imaging. J. of Vibrational Spectroscopy. 75 (2014).
DOI: 10.1016/j.vibspec.2014.09.004
Google Scholar
[33]
S. Jerez, M. Uh. A flux-limiter method for modeling blood flow in the aorta artery. J. of Mathematical and Computer Modelling. 52 (2010) 962-968.
DOI: 10.1016/j.mcm.2010.01.010
Google Scholar
[34]
J. Bramwell, A. Hill. The Velocity of the Pulse Wave in Man, Proceedings of the Royal Society of London. 93 (1922) 298-306.
Google Scholar
[35]
A. Redheuil, W.C. Yu, O.W. Colin, E. Mousseaux, A. Cesar, R. Yan, N. Kachenoura, D. Bluemke, J.A.C. Lima, Reduced Ascending Aortic Strain and Distensibility Earliest Manifestations Of vascular Aging in Humans, American Heart Association Hypertension. (2010).
DOI: 10.1161/hypertensionaha.109.141275
Google Scholar
[36]
P.C. Tang, P.D. DiMusto, N.C. De oliveira, B.L. Rademacher, J.L. Philip, S.A. Akhter, C.W. Acher, Natural history of the proximal aorta in patients with descending thoracic aortic disease, J. Vascular Surgery. (2017).
DOI: 10.1016/j.jvs.2017.10.062
Google Scholar
[37]
C.M Garcia-Herrera, D.J. Celentano, M. Cruchaga , F.J. Rojo, J.M. Atienza, G.V. Guinea, Mechanical characterisation of the human thoracic descending aorta: experiments and modelling. J of Comput Methods Biomech Biomed Engin. 15 (2012).
DOI: 10.1080/10255842.2010.520704
Google Scholar
[38]
C.L. Lake, P.D. Booker, Pediatric cardiac anesthesia, Fourth ed, Lippincott Williams and Wilkins, New York, (2005).
Google Scholar
[39]
J. Ferruzzi, M.R. Bersi, S. Uman, H. Yanagisawa, J.D. Humphrey. Decreased Elastic Energy Storage, Not Increased Material Stiffness, Characterizes Central Artery Dysfunction in Fibulin-5 Deficiency Independentof Sex, J Biomech Eng. 137(2015).
DOI: 10.1115/1.4029431
Google Scholar
[40]
F. Cuomo, S. Roccabianca, D. Dillon-Murphy, N. Xiao, J. D. Humphrey, C. A. Figueroa. Effects of age-associated regional changes in aortic stiffness on human hemodynamics revealed by computational modeling, J. of Plos One. 12 (2017).
DOI: 10.1371/journal.pone.0173177
Google Scholar
[41]
I. Voges, M. Jerosch-Herold, J. Hedderich, E. Pardun, C. Hart, D. D. Gabbert, J. H. Hansen, C. Petko, H. H. Kramer, C. Rickers. Normal values of aortic dimensions, distensibility, and pulse wave velocity in children and young adults: a cross-sectional study, J. of Cardiovascular Magnetic Resonance. 14 (2012).
DOI: 10.1186/1532-429x-14-77
Google Scholar
[42]
A. Hemmasizadeh, A. Tsamis , R. Cheheltani, S. Assari, A. D'Amore, M. Autieri, M. F. Kiania, N. Pleshko, W. R. Wagner, S. C. Watkins, D. Vorpd, K. Darvisha. Correlations between transmural mechanical and morphological properties in porcine thoracic descending aorta, J. of The Mechanical Behavior of biomedical Materials. 47 (2015).
DOI: 10.1016/j.jmbbm.2015.03.004
Google Scholar
[43]
A. Benbrahim, J. Gilbert,B. B. Milinazzo, D. F. Warnock, S. Dhara, J. P. Gertler, R. W. Orkin, W. M. Abbott. A compliant tubular device to study the influences of wall strain and fluid shear stress on cells of the vascular wall, J. of Vasc Surg. 20 (1994).
DOI: 10.1016/0741-5214(94)90005-1
Google Scholar