Analytical Modeling of a Descending Aorta Containing Human Blood Flow

Article Preview

Abstract:

In the recent years, blood flow through an aorta has been the main focus of many investigators. It shows particular interest in analyzing human aortic stiffness and blood flow behavior. Mainly, an unsteady state is applied for incompressible fluid, which is assumed to be newtonian. Artery is considered an elastic tube and the wall boundaries are isotropic. The analytical modeling of blood involves adopting an asymptotic approach according to a small aspect radio, which is inversely proportional to Reynolds number. The wall has been assumed a thin shell, which generates a small axisymmetric vibration. The mathematical model of the wall is developed using the thin shell theory based on geodesic curvature parameter. In the end, the analytical results simulation is applied to have better understanding of the effects of blood flow behavior over the elasticity aortic wall properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-129

Citation:

Online since:

May 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. D. Makinde, Z. H. Khan, W. A. Khan, M. S. Tshehla, Magneto hemodynamics of nanofluid with heat and mass transfer in a slowly varying symmetrical channel, Inter J. of Eng Rese in Africa. 28 (2017) 118-141.

DOI: 10.4028/www.scientific.net/jera.28.118

Google Scholar

[2] J. Prakash, O. D. Makinde, Radiative heat transfer to blood flow through a stenotic artery in the presence of erythrocytes and magnetic field, Lat Ameri Appli Resea. 41 (2011) 273-277.

Google Scholar

[3] D. Derong, G. Peiqi, B. Wenboa. Numerical investigation of heat transfer characteristic of fixed planar elastic tube bundles, J of Energy Conversion and Management. 103 (2015) 859-870.

DOI: 10.1016/j.enconman.2015.06.082

Google Scholar

[4] T.M. Squires, S.R. Quake. Micro-fluidics: fluid physics at the nanoliter scale , Reviews of modern physics. 77 (2005) 977–1026.

DOI: 10.1103/revmodphys.77.977

Google Scholar

[5] L. Zhang, W. Xu, J. Long, Z. Lei. Surface roughening analysis of cold drawn tube based on macro–micro coupling finite element method, J of Materials Processing Technology. 224 (2015) 189-199.

DOI: 10.1016/j.jmatprotec.2015.05.009

Google Scholar

[6] A. Matin. Main Gas pipelines: Fracture Resistance Assessment of Pipe, J of Mechanics Engineering and Automation. 3 (2013) 127-140.

Google Scholar

[7] A. Milani, A. Abbas. Multiscale modeling and performance analysis of evacuated tube collectors for solar water heaters using diffuse flat reflector , Journal of renewable energy. 86 (2016) 360-374.

DOI: 10.1016/j.renene.2015.08.013

Google Scholar

[8] M. Alimohammadi, J.M. Sherwood, M. Karimpour, O.Agu, S. Balabani, V. Diaz-Zuccarini. Aortic dissection simulation models for clinical support: fluid-structure interaction vs rigid wall model, J of BioMedical Engineering. (2015).

DOI: 10.1186/s12938-015-0032-6

Google Scholar

[9] R.W. Ogden, C.A.J Schulze-Bauer. Phenomenological and structural aspects of the mechanical response of arteries, J of Mechanics in Medecine and Biology. 46 (2000) 125–140.

DOI: 10.1115/imece2000-1926

Google Scholar

[10] A. Ghasemi, N.K.R. Kevlahan. The role of Reynolds number in the fluid-elastic instability of tube arrays, J of Fluids and Structures. 73 (2017) 16-36.

DOI: 10.1016/j.jfluidstructs.2017.05.004

Google Scholar

[11] A. Mallios, B. Bouraak, K. Zannis, N. Borenstein, M. Combesa. A New Experimental Animal Protocol for the Direct Viewing of Endovascular Interventions Involving the Ascending Aorta and Aortic Arch, EJVES Extra. 25 (2013) e11-e13.

DOI: 10.1016/j.ejvsextra.2012.11.003

Google Scholar

[12] L. Xiao T. Fan, F.A. Sun, X. Deng. Numerical simulation of nucleotide transport in the human thoracic aorta, J of Biomechanics. 46 (2013) 819-827.

DOI: 10.1016/j.jbiomech.2012.11.009

Google Scholar

[13] A.C. Benim, A. Nahavandi, A. Assmann, D. Schubert, P. Feindt, S.H. Suh. Simulation of blood flow in human aorta with emphasis on outlet boundary conditions, J of Applied Mathematical Modelling. 35 (2011) 3175–3188.

DOI: 10.1016/j.apm.2010.12.022

Google Scholar

[14] O. Prakash, O. D. Makinde, S. P. Singh, N. Jain, D. Kumar, Effects of stenosis on non-Newtonian flow of blood in blood vessels, Inter J. of Biomath. 8 (2015) No. 1, 1550010 (13pages).

DOI: 10.1142/s1793524515500102

Google Scholar

[15] R. Patne, D. Gitibabu, V. Shankar. Consistent formulations for stability of fluid flow through deformable channels and tubes, J. of fluid Mechanics. 87(2017) 31-66.

DOI: 10.1017/jfm.2017.485

Google Scholar

[16] O. Eugenio, Structural Analysis with The Finite Element Method. Linear Statics. Vol 1. Basic and Solids, First ed., CIMNE, Spain, (2009).

Google Scholar

[17] L. John, JR. Giuliani. A general formulation of the thin shell approximation for axisymmetric, hypersonic, hydromagnetic flows, The astrophysical journal. 256 (1982) 624-636.

DOI: 10.1086/159939

Google Scholar

[18] V.V. Novozhilov, J.M.R. Radok, Thin Shell Theory, Second ed., Springer, Netherlands, (2014).

Google Scholar

[19] L. Serge, Mécanique Des Structures Tome 1: Solides Elastiques, Plaques et Coque, Second ed., Cépaduès, France, (2005).

Google Scholar

[20] S. Taha. The flow of Newtonian and power law fluids in elastic tubes, International Journal of Non-Linear Mechanics. 67 (2014) 245–250.

DOI: 10.1016/j.ijnonlinmec.2014.09.013

Google Scholar

[21] J. Leibinger, M. Dumbser, U. Iben, I. Wayand. A path-conservative Osher-type scheme for axially symmetric compressible flows in flexible visco-elastic tubes, Journal Applied Numerical Mathematics. 105 (2016) 47-63.

DOI: 10.1016/j.apnum.2016.02.001

Google Scholar

[22] H. Demiray. Solitary waves in prestressed elastic tubes, Bulletin of Mathematical Biology. 58 (1996) 939-955.

DOI: 10.1007/bf02459491

Google Scholar

[23] M. Alimohammadi, J. M. Sherwood, M. Karimpour, O. Agu, S. Balabani, V. Diaz- Zuccarini. Aortic dissection simulation models for clinical support: fluid-structure interaction vs. rigid wall models, Biomedical Engineering Online. (2015).

DOI: 10.1186/s12938-015-0032-6

Google Scholar

[24] R. Fattori, P. Cao , P. De Rango, M. Czerny, A. Evangelista, C. Nienaber, H. Rousseau, M. Shepens. Interdisciplinary expert consensus document on management of type B aortic dissection, J. of the American College of Cardiology. 61(2013).

DOI: 10.1016/j.jacc.2012.11.072

Google Scholar

[25] I.M Nordon, R.J. Hinchliffe , I.M Loftus, R.A Morgan, M.M Thompson. Management of acute aortic syndrome and chronic aortic dissection, J. of CardioVascular and Interventional Radiology. 34(2011)890-902.

DOI: 10.1007/s00270-010-0028-3

Google Scholar

[26] A.K. Thukkani, S. Kinlay. Endovascular Intervention for Peripheral Artery Disease, Circulation Research. 116 (2015) 1599-1613.

DOI: 10.1161/circresaha.116.303503

Google Scholar

[27] P. Luchini, M. Lupo and A. Pozzi. Unsteady stokes flow in a distensible pipe, J. of Applied Mathematics and Mechanics (ZAMM). 71 (1991) 367-378.

DOI: 10.1002/zamm.19910711002

Google Scholar

[28] O. D. Makinde, Effect of variable viscosity on arterial blood flow, Far East J. Appl. Maths. 4 (2000) 43-58.

Google Scholar

[29] O. D. Makinde, Chebyshev collocation approach to stability of blood flows in a large artery, Afric J. of Biotech. 11 (2012) 9881-9887.

Google Scholar

[30] A. Redheuil, W. C. Yu , E. Mousseaux, A. A. Harouni, N. Kachenoura, C. O. Wu, D. Bluemke, J. A.C. lima, Age-related changes in aortic arch geometry: relationship with proximal aortic function and left ventricular mass and remodeling, J Am Coll Cardiol. 58 (2011).

DOI: 10.1016/j.jacc.2011.06.012

Google Scholar

[31] P. Reymonda, P. Crosettob, S. Deparisb, A. Quarteronib, N. Stergiopulosa. Physiological simulation of blood flow in the aorta: Comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models, J. of Medical Engineering & Physics. 35 (2013).

DOI: 10.1016/j.medengphy.2012.08.009

Google Scholar

[32] M. Pilarczyk, A. Rygula, A. Kaczor, L. Mateuszuk, E. Maslak, S. Chlopicki, M. Baranska. A novel approach to investigate vascular wall in 3D: Combined Raman spectroscopy and atomic force microscopy for aorta en face imaging. J. of Vibrational Spectroscopy. 75 (2014).

DOI: 10.1016/j.vibspec.2014.09.004

Google Scholar

[33] S. Jerez, M. Uh. A flux-limiter method for modeling blood flow in the aorta artery. J. of Mathematical and Computer Modelling. 52 (2010) 962-968.

DOI: 10.1016/j.mcm.2010.01.010

Google Scholar

[34] J. Bramwell, A. Hill. The Velocity of the Pulse Wave in Man, Proceedings of the Royal Society of London. 93 (1922) 298-306.

Google Scholar

[35] A. Redheuil, W.C. Yu, O.W. Colin, E. Mousseaux, A. Cesar, R. Yan, N. Kachenoura, D. Bluemke, J.A.C. Lima, Reduced Ascending Aortic Strain and Distensibility Earliest Manifestations Of vascular Aging in Humans, American Heart Association Hypertension. (2010).

DOI: 10.1161/hypertensionaha.109.141275

Google Scholar

[36] P.C. Tang, P.D. DiMusto, N.C. De oliveira, B.L. Rademacher, J.L. Philip, S.A. Akhter, C.W. Acher, Natural history of the proximal aorta in patients with descending thoracic aortic disease, J. Vascular Surgery. (2017).

DOI: 10.1016/j.jvs.2017.10.062

Google Scholar

[37] C.M Garcia-Herrera, D.J. Celentano, M. Cruchaga , F.J. Rojo, J.M. Atienza, G.V. Guinea, Mechanical characterisation of the human thoracic descending aorta: experiments and modelling. J of Comput Methods Biomech Biomed Engin. 15 (2012).

DOI: 10.1080/10255842.2010.520704

Google Scholar

[38] C.L. Lake, P.D. Booker, Pediatric cardiac anesthesia, Fourth ed, Lippincott Williams and Wilkins, New York, (2005).

Google Scholar

[39] J. Ferruzzi, M.R. Bersi, S. Uman, H. Yanagisawa, J.D. Humphrey. Decreased Elastic Energy Storage, Not Increased Material Stiffness, Characterizes Central Artery Dysfunction in Fibulin-5 Deficiency Independentof Sex, J Biomech Eng. 137(2015).

DOI: 10.1115/1.4029431

Google Scholar

[40] F. Cuomo, S. Roccabianca, D. Dillon-Murphy, N. Xiao, J. D. Humphrey, C. A. Figueroa. Effects of age-associated regional changes in aortic stiffness on human hemodynamics revealed by computational modeling, J. of Plos One. 12 (2017).

DOI: 10.1371/journal.pone.0173177

Google Scholar

[41] I. Voges, M. Jerosch-Herold, J. Hedderich, E. Pardun, C. Hart, D. D. Gabbert, J. H. Hansen, C. Petko, H. H. Kramer, C. Rickers. Normal values of aortic dimensions, distensibility, and pulse wave velocity in children and young adults: a cross-sectional study, J. of Cardiovascular Magnetic Resonance. 14 (2012).

DOI: 10.1186/1532-429x-14-77

Google Scholar

[42] A. Hemmasizadeh, A. Tsamis , R. Cheheltani, S. Assari, A. D'Amore, M. Autieri, M. F. Kiania, N. Pleshko, W. R. Wagner, S. C. Watkins, D. Vorpd, K. Darvisha. Correlations between transmural mechanical and morphological properties in porcine thoracic descending aorta, J. of The Mechanical Behavior of biomedical Materials. 47 (2015).

DOI: 10.1016/j.jmbbm.2015.03.004

Google Scholar

[43] A. Benbrahim, J. Gilbert,B. B. Milinazzo, D. F. Warnock, S. Dhara, J. P. Gertler, R. W. Orkin, W. M. Abbott. A compliant tubular device to study the influences of wall strain and fluid shear stress on cells of the vascular wall, J. of Vasc Surg. 20 (1994).

DOI: 10.1016/0741-5214(94)90005-1

Google Scholar