Numerical Method of Weakly Compressible Poiseuille Flow Using Lattice Boltzmann Method

Article Preview

Abstract:

The present work focuses on the numerical simulation of isothermal and weakly compressible Poiseuille flow in a planar channel using the Lattice Boltzmann method with multiple times of relaxation (MRT-LBE) coupled to the Finite Difference method (FDM). The active fluid considered is the air under low Mach number assumption. The flow is two-dimensional, laminar and all the physical properties are constants except the density which varies in the sense of the Boussinesq approximation. The effects of the compressibility, the inclination angle and the Reynolds number on the dynamical and thermal fields are studied numerically. The results are presented in terms of streamlines, isotherms and transverse velocity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-116

Citation:

Online since:

May 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.C. Georgiou, M.J. Crochet, Time-dependent compressible extrudate-swell problem with slip at the wall, J. Rheol. 38 (1994) 1745–1755.

DOI: 10.1122/1.550524

Google Scholar

[2] G.C. Georgiou, M.J. Crochet, Compressible viscous flow in slits with slip at the wall, J. Rheol. 38 (1994) 639–654.

DOI: 10.1122/1.550479

Google Scholar

[3] Z.Y. Guo, X.B. Wu, Further study on compressibility effects on the gas flow and heat transfer in a microtube, Microscale Thermophys. Eng. 2 (1998) 111–120.

DOI: 10.1080/108939598200024

Google Scholar

[4] D.C. Venerus, Laminar capillary flow of compressible viscous fluids, J. Fluid Mech. 555 (2006) 59–80.

DOI: 10.1017/s0022112006008755

Google Scholar

[5] E.B. Arkilic, M.A. Schmidt, K.S. Breuer, Gaseous slip flow in long microchannels, J. MEMS.6 (1995) 167–178.

DOI: 10.1109/84.585795

Google Scholar

[6] C. Cai, Q. Sun, I.D. Boyd, Gas flows in microchannels and microtubes, J. Fluid Mech. 589 (2007) 305–314.

DOI: 10.1017/s0022112007008178

Google Scholar

[7] E. Taliadorou, M. Neophytou, GC. Georgiou, Perturbation solutions of Poiseuille flows of weakly compressible Newtonian liquids, J Non-Newton Fluid Mech, 158 (2009) 162–169.

DOI: 10.1016/j.jnnfm.2009.06.003

Google Scholar

[8] DC. Venerus, DJ. Bugajsky, Laminar flow in a channel. Phys Fluids( 2010) 22:046101.

DOI: 10.1063/1.3371719

Google Scholar

[9] K. Housiadas, GC. Georgiou, Perturbation solution of Poiseuille flow of a weakly compressible Oldroyd-B fluid. J Non-Newton Fluid Mech 166 (2011) 73–92.

DOI: 10.1016/j.jnnfm.2010.10.007

Google Scholar

[10] KD. Housiadas, GC. Georgiou, IG. Mamoutos, Laminar axisymmetric flow of a weakly compressible viscoelastic fluid, Rheol Acta.

DOI: 10.1007/s00397-011-0610-x

Google Scholar

[11] S. Poyiadji, KD. Housiadas, K Kaouri, GC. Georgiou, Asymptotic solutions of weakly compressible Newtonian Poiseuille flows with pressure-dependent viscosity, European Journal of Mechanics B/Fluids 49 (2015) 217–225.

DOI: 10.1016/j.euromechflu.2014.09.002

Google Scholar

[12] KD. Housiadas, GC. Georgiou, New analytical solutions for weakly compressible Newtonian Poiseuille flows with pressure-dependent viscosity, International Journal of Engineering Science 107 (2016) 13–27.

DOI: 10.1016/j.ijengsci.2016.07.001

Google Scholar

[13] P. Lallemand, L.S. Luo, Hybrid finite difference thermal lattice Boltzmann equation, International Journal of Modern Physics B, Vol. 17, Issue 01-02 (2003) 41-47.

DOI: 10.1142/s0217979203017060

Google Scholar

[14] P. Lallemand, L.S. luo, Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimension, Physical Review E, Vol.68 (2003) 036706(25).

DOI: 10.1103/physreve.68.036706

Google Scholar

[15] A. Mezrhab, M. Bouzidi, P. Lallemand, Hybrid lattice Boltzmann finite difference simulation of Convective flows, Computer and Fluids, Vol. 33 (2004) 623-641.

DOI: 10.1016/j.compfluid.2003.05.001

Google Scholar

[16] P. Lallemand, L.-S. Luo, Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E 61 (2000) 6546–6562.

DOI: 10.1103/physreve.61.6546

Google Scholar

[17] J. Hardy, Y. Pomeau, O. de Pazzis,Time evolution of two dimensional model system. I. Invariant states and time correlation functions, J. Math. Phys, Vol. 14(12), (1973) 1746-1759.

DOI: 10.1063/1.1666248

Google Scholar

[18] S. Ulam, Random processes and transformations, Proc. International Congress of Mathematicians, Vol. 2 (1952) 264-275.

Google Scholar

[19] M. Bouzidi, M. Firdaouss,P. Lallemand, Momentum transfer of a Boltzmann lattice fluid with boundaries, Physics of Fluids, Vol. 13, No. 11 (2001) 3452-3459.

DOI: 10.1063/1.1399290

Google Scholar

[20] I. Ginzbourg , PM. Adler, Boundary flow condition analysis for the three- dimensional Lattice Boltzmann model, Phys. II, 4 (1994) 191–214.

DOI: 10.1051/jp2:1994123

Google Scholar