[1]
G.C. Georgiou, M.J. Crochet, Time-dependent compressible extrudate-swell problem with slip at the wall, J. Rheol. 38 (1994) 1745–1755.
DOI: 10.1122/1.550524
Google Scholar
[2]
G.C. Georgiou, M.J. Crochet, Compressible viscous flow in slits with slip at the wall, J. Rheol. 38 (1994) 639–654.
DOI: 10.1122/1.550479
Google Scholar
[3]
Z.Y. Guo, X.B. Wu, Further study on compressibility effects on the gas flow and heat transfer in a microtube, Microscale Thermophys. Eng. 2 (1998) 111–120.
DOI: 10.1080/108939598200024
Google Scholar
[4]
D.C. Venerus, Laminar capillary flow of compressible viscous fluids, J. Fluid Mech. 555 (2006) 59–80.
DOI: 10.1017/s0022112006008755
Google Scholar
[5]
E.B. Arkilic, M.A. Schmidt, K.S. Breuer, Gaseous slip flow in long microchannels, J. MEMS.6 (1995) 167–178.
DOI: 10.1109/84.585795
Google Scholar
[6]
C. Cai, Q. Sun, I.D. Boyd, Gas flows in microchannels and microtubes, J. Fluid Mech. 589 (2007) 305–314.
DOI: 10.1017/s0022112007008178
Google Scholar
[7]
E. Taliadorou, M. Neophytou, GC. Georgiou, Perturbation solutions of Poiseuille flows of weakly compressible Newtonian liquids, J Non-Newton Fluid Mech, 158 (2009) 162–169.
DOI: 10.1016/j.jnnfm.2009.06.003
Google Scholar
[8]
DC. Venerus, DJ. Bugajsky, Laminar flow in a channel. Phys Fluids( 2010) 22:046101.
DOI: 10.1063/1.3371719
Google Scholar
[9]
K. Housiadas, GC. Georgiou, Perturbation solution of Poiseuille flow of a weakly compressible Oldroyd-B fluid. J Non-Newton Fluid Mech 166 (2011) 73–92.
DOI: 10.1016/j.jnnfm.2010.10.007
Google Scholar
[10]
KD. Housiadas, GC. Georgiou, IG. Mamoutos, Laminar axisymmetric flow of a weakly compressible viscoelastic fluid, Rheol Acta.
DOI: 10.1007/s00397-011-0610-x
Google Scholar
[11]
S. Poyiadji, KD. Housiadas, K Kaouri, GC. Georgiou, Asymptotic solutions of weakly compressible Newtonian Poiseuille flows with pressure-dependent viscosity, European Journal of Mechanics B/Fluids 49 (2015) 217–225.
DOI: 10.1016/j.euromechflu.2014.09.002
Google Scholar
[12]
KD. Housiadas, GC. Georgiou, New analytical solutions for weakly compressible Newtonian Poiseuille flows with pressure-dependent viscosity, International Journal of Engineering Science 107 (2016) 13–27.
DOI: 10.1016/j.ijengsci.2016.07.001
Google Scholar
[13]
P. Lallemand, L.S. Luo, Hybrid finite difference thermal lattice Boltzmann equation, International Journal of Modern Physics B, Vol. 17, Issue 01-02 (2003) 41-47.
DOI: 10.1142/s0217979203017060
Google Scholar
[14]
P. Lallemand, L.S. luo, Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimension, Physical Review E, Vol.68 (2003) 036706(25).
DOI: 10.1103/physreve.68.036706
Google Scholar
[15]
A. Mezrhab, M. Bouzidi, P. Lallemand, Hybrid lattice Boltzmann finite difference simulation of Convective flows, Computer and Fluids, Vol. 33 (2004) 623-641.
DOI: 10.1016/j.compfluid.2003.05.001
Google Scholar
[16]
P. Lallemand, L.-S. Luo, Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E 61 (2000) 6546–6562.
DOI: 10.1103/physreve.61.6546
Google Scholar
[17]
J. Hardy, Y. Pomeau, O. de Pazzis,Time evolution of two dimensional model system. I. Invariant states and time correlation functions, J. Math. Phys, Vol. 14(12), (1973) 1746-1759.
DOI: 10.1063/1.1666248
Google Scholar
[18]
S. Ulam, Random processes and transformations, Proc. International Congress of Mathematicians, Vol. 2 (1952) 264-275.
Google Scholar
[19]
M. Bouzidi, M. Firdaouss,P. Lallemand, Momentum transfer of a Boltzmann lattice fluid with boundaries, Physics of Fluids, Vol. 13, No. 11 (2001) 3452-3459.
DOI: 10.1063/1.1399290
Google Scholar
[20]
I. Ginzbourg , PM. Adler, Boundary flow condition analysis for the three- dimensional Lattice Boltzmann model, Phys. II, 4 (1994) 191–214.
DOI: 10.1051/jp2:1994123
Google Scholar