Combined Natural Convection and Thermal Radiation Heat Transfer in a Triangular Enclosure with an Inner Rectangular Body

Article Preview

Abstract:

In this paper, a numerical simulation was conducted to investigate the steady laminar natural convective heat transfer and surface radiation from a heated rectangular body in a triangular enclosure. The coupled equations of Navier-stockes and energy are both solved using the finite volume method. The velocity-pressure coupling is insured by the SIMPLER algorithm. The fluid used in this study is a dry air of Prandtl number Pr = 0.71.In such way that, the radiative exchanges are made only through solid walls and which are assumed to be gray and diffuse. The physical parameters characterizing the problem and influencing heat transfer are Rayleigh number Ra, aspect ratio A, height h and width w of the body. The results are presented in terms of isotherms, streamlines and average Nusselt number.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-68

Citation:

Online since:

May 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. A. Joudi, I. A. Hussein, A. A. Farhan. Computational model for a prism shaped storage solar collector with a right triangular cross section, Energy Conversion and Management. 45 (2004) 337-342.

DOI: 10.1016/s0196-8904(03)00153-5

Google Scholar

[2] P. M. Haese and M. D. Teubner. Heat exchange in an attic space, International Journal of Heat and Mass Transfer. 45 (25) (2002) 4925-4936.

DOI: 10.1016/s0017-9310(02)00208-9

Google Scholar

[3] M. A. R. Sharif, T. R. Mohammad. Natural convection in cavities with constant flux heating at the bottom wall and isothermal cooling from the sidewalls, International Journal of Thermal Sciences. 44 (9) (2005) 865-878.

DOI: 10.1016/j.ijthermalsci.2005.02.006

Google Scholar

[4] R. D. Flack, T. T. Konopnicki, J. H. Rooke. The measurement of natural convective heat transfer in triangular enclosures, J. Heat Transfer, Trans. ASME. 101 (1979) 648-654.

DOI: 10.1115/1.3451051

Google Scholar

[5] V. A. Akinsete and T. A. Coleman. Heat transfer by steady laminar free convection in triangular enclosures. International Journal of Heat and Mass Transfer. 25 (7) (1982) 991-998.

DOI: 10.1016/0017-9310(82)90074-6

Google Scholar

[6] H. Salmun. Convection patterns in a triangular domain, International Journal of Heat Mass Transfer. 38 (1995) 351-362.

DOI: 10.1016/0017-9310(95)90029-2

Google Scholar

[7] H. Asan and L. Namli. Laminar natural convection in a pitched roof of triangular cross-section: summer day boundary conditions, Energy and Buildings. 33 (2000) 69-73.

DOI: 10.1016/s0378-7788(00)00066-9

Google Scholar

[8] C. W. Lei and J. C. Patterson. Unsteady natural convection in a triangular enclosure induced by surface cooling International Journal of Heat and Fluid Flow. 26 (2005) 307–321.

DOI: 10.1016/j.ijheatfluidflow.2004.08.010

Google Scholar

[9] T. Basak, S. Roy, Ch. Thirumalesha. Finite element analysis of natural convection in a triangular enclosure:Effects of various thermal boundary conditions, Chemical Engineering Science 62 (2007) 2623-2640.

DOI: 10.1016/j.ces.2007.01.053

Google Scholar

[10] E. Kent Fuad.Numerical analysis of laminar natural convection in isosceles triangular enclosures for cold base and hot inclined walls, Mechanics Research Communications. 36 (2009) 497-508.

DOI: 10.1016/j.mechrescom.2008.11.002

Google Scholar

[11] Z. Yu, X. Xu, Y. Hu, L. Fan, K. Cen. Numerical study of transient buoyancy-driven convective heat transfer of water-based nanofluids in a bottom-heated isosceles triangular enclosure, International Journal of Heat and Mass Transfer 54 (2011).

DOI: 10.1016/j.ijheatmasstransfer.2010.09.017

Google Scholar

[12] Y. Varol, H.F. Oztop, T. Yilmaz. Natural convection in triangular enclosures with protruding isothermal heater, International Journal of Heat and Mass Transfer. 50 (2007) 2451-2462.

DOI: 10.1016/j.ijheatmasstransfer.2006.12.027

Google Scholar

[13] Y. Varol and H.F. Oztop. Control of buoyancy-induced temperature and flow fields with an embedded adiabatic thin plate in porous triangular cavities, Applied Thermal Engineering. 29 (2009) 558-566.

DOI: 10.1016/j.applthermaleng.2008.03.018

Google Scholar

[14] X. Xu, Z. Yu, Y. Hu, L. Fan, K. Cen. A numerical study of laminar natural convective heat transfer around a horizontal cylinder inside a concentric air-filled triangular enclosure, International Journal of Heat and Mass Transfer. 53 (2010).

DOI: 10.1016/j.ijheatmasstransfer.2009.09.023

Google Scholar

[15] X. Xu, Z. Yu, Y. Hu, L. Fan, K. Cen. Transient natural convective heat transfer of a low-Prandtl-number fluid from a heated horizontal circular cylinder to its coaxial triangular enclosure, International Journal of Heat and Mass Transfer. 55 (2012).

DOI: 10.1016/j.ijheatmasstransfer.2011.10.011

Google Scholar

[16] S.M. Aminossadati. Hydromagnetic natural cooling of a triangular heat source in a triangular cavity with water–CuO nanofluid, International Communications in Heat and Mass Transfer. 43 (2013) 22-29.

DOI: 10.1016/j.icheatmasstransfer.2013.02.009

Google Scholar

[17] A. Amrani, N. Dihmani, S. Amraqui, A. Mezrhab. Numerical evaluation of natural convection heat transfer in a supply-air paziaud window, Computational Thermal Sciences. 6 (5) (2014) 383–395.

DOI: 10.1615/computthermalscien.2014011147

Google Scholar

[18] M. Sankar, S. Kiran, G.K. Ramesh, O.D. Makinde. Natural convection in a non-uniformly heated vertical annular cavity, Defect and Diffusion Forum. 377 (2017) 189-199.

DOI: 10.4028/www.scientific.net/ddf.377.189

Google Scholar

[19] Y. Liu and N. Phan-Thien. A complete conjugate conduction convection and radiation problem for a heated block in a vertical differentially heated square enclosure, Computational Mechanics. 24 (1999) 175-186.

DOI: 10.1007/s004660050450

Google Scholar

[20] H. Bouali, A. Mezrhab, H. Amaoui, M. Bouzidi. Radiation—natural convection heat transfer in an inclined rectangular enclosure. International Journal of Thermal Sciences. 45 (2006) 553-566.

DOI: 10.1016/j.ijthermalsci.2005.10.001

Google Scholar

[21] A. Mezrhab and L. Bchir. Radiation-natural convection interactions in partitioned cavities, International Journal of Numerical Methods for Heat and Fluid Flow. 9 (2) (1999) 186-203.

DOI: 10.1108/09615539810232880

Google Scholar

[22] S. Amraqui, A. Mezrhab, C. Abid. Combined Natural Convection and Surface Radiation in Solar Collector Equipped with Partitions, Applied Solar Energy. 47 (1) (2011) 36-47.

DOI: 10.3103/s0003701x11010051

Google Scholar

[23] S. Das, R. N. Jana, O. D. Makinde. Natural convection near a moving vertical plate with ramped heat and mass fluxes in the presence of thermal radiation, Defect and Diffusion Forum. 377( 2017), 211-232.

DOI: 10.4028/www.scientific.net/ddf.377.211

Google Scholar

[24] S. V. Patankar. Numerical heat transfer and fluid flow. New York, NY: McGraw-Hill. (1980).

Google Scholar

[25] H. Asan and L. Namli, Numerical simulation of buoyant flow in a roof of triangular cross section under winter day boundary conditions, Energy Buildings. 33 (2001) 753-757.

DOI: 10.1016/s0378-7788(01)00063-9

Google Scholar

[26] A. Koca, Hakan F. Oztopb, Y. Varol. Numerical analysis of natural convection in shed roofs with eave of buildings for cold climates. Computers and Mathematics with Applications. 56 (2008) 3165-3174.

DOI: 10.1016/j.camwa.2008.07.012

Google Scholar

[27] L.C. Chang, K.T. Yang, J.R. Lloyd. Radiation-natural convection intersections in two dimensional complex enclosures, Journal of Heat Transfer. 105 (1983) 89-95.

DOI: 10.1115/1.3245564

Google Scholar