[1]
K. A. Joudi, I. A. Hussein, A. A. Farhan. Computational model for a prism shaped storage solar collector with a right triangular cross section, Energy Conversion and Management. 45 (2004) 337-342.
DOI: 10.1016/s0196-8904(03)00153-5
Google Scholar
[2]
P. M. Haese and M. D. Teubner. Heat exchange in an attic space, International Journal of Heat and Mass Transfer. 45 (25) (2002) 4925-4936.
DOI: 10.1016/s0017-9310(02)00208-9
Google Scholar
[3]
M. A. R. Sharif, T. R. Mohammad. Natural convection in cavities with constant flux heating at the bottom wall and isothermal cooling from the sidewalls, International Journal of Thermal Sciences. 44 (9) (2005) 865-878.
DOI: 10.1016/j.ijthermalsci.2005.02.006
Google Scholar
[4]
R. D. Flack, T. T. Konopnicki, J. H. Rooke. The measurement of natural convective heat transfer in triangular enclosures, J. Heat Transfer, Trans. ASME. 101 (1979) 648-654.
DOI: 10.1115/1.3451051
Google Scholar
[5]
V. A. Akinsete and T. A. Coleman. Heat transfer by steady laminar free convection in triangular enclosures. International Journal of Heat and Mass Transfer. 25 (7) (1982) 991-998.
DOI: 10.1016/0017-9310(82)90074-6
Google Scholar
[6]
H. Salmun. Convection patterns in a triangular domain, International Journal of Heat Mass Transfer. 38 (1995) 351-362.
DOI: 10.1016/0017-9310(95)90029-2
Google Scholar
[7]
H. Asan and L. Namli. Laminar natural convection in a pitched roof of triangular cross-section: summer day boundary conditions, Energy and Buildings. 33 (2000) 69-73.
DOI: 10.1016/s0378-7788(00)00066-9
Google Scholar
[8]
C. W. Lei and J. C. Patterson. Unsteady natural convection in a triangular enclosure induced by surface cooling International Journal of Heat and Fluid Flow. 26 (2005) 307–321.
DOI: 10.1016/j.ijheatfluidflow.2004.08.010
Google Scholar
[9]
T. Basak, S. Roy, Ch. Thirumalesha. Finite element analysis of natural convection in a triangular enclosure:Effects of various thermal boundary conditions, Chemical Engineering Science 62 (2007) 2623-2640.
DOI: 10.1016/j.ces.2007.01.053
Google Scholar
[10]
E. Kent Fuad.Numerical analysis of laminar natural convection in isosceles triangular enclosures for cold base and hot inclined walls, Mechanics Research Communications. 36 (2009) 497-508.
DOI: 10.1016/j.mechrescom.2008.11.002
Google Scholar
[11]
Z. Yu, X. Xu, Y. Hu, L. Fan, K. Cen. Numerical study of transient buoyancy-driven convective heat transfer of water-based nanofluids in a bottom-heated isosceles triangular enclosure, International Journal of Heat and Mass Transfer 54 (2011).
DOI: 10.1016/j.ijheatmasstransfer.2010.09.017
Google Scholar
[12]
Y. Varol, H.F. Oztop, T. Yilmaz. Natural convection in triangular enclosures with protruding isothermal heater, International Journal of Heat and Mass Transfer. 50 (2007) 2451-2462.
DOI: 10.1016/j.ijheatmasstransfer.2006.12.027
Google Scholar
[13]
Y. Varol and H.F. Oztop. Control of buoyancy-induced temperature and flow fields with an embedded adiabatic thin plate in porous triangular cavities, Applied Thermal Engineering. 29 (2009) 558-566.
DOI: 10.1016/j.applthermaleng.2008.03.018
Google Scholar
[14]
X. Xu, Z. Yu, Y. Hu, L. Fan, K. Cen. A numerical study of laminar natural convective heat transfer around a horizontal cylinder inside a concentric air-filled triangular enclosure, International Journal of Heat and Mass Transfer. 53 (2010).
DOI: 10.1016/j.ijheatmasstransfer.2009.09.023
Google Scholar
[15]
X. Xu, Z. Yu, Y. Hu, L. Fan, K. Cen. Transient natural convective heat transfer of a low-Prandtl-number fluid from a heated horizontal circular cylinder to its coaxial triangular enclosure, International Journal of Heat and Mass Transfer. 55 (2012).
DOI: 10.1016/j.ijheatmasstransfer.2011.10.011
Google Scholar
[16]
S.M. Aminossadati. Hydromagnetic natural cooling of a triangular heat source in a triangular cavity with water–CuO nanofluid, International Communications in Heat and Mass Transfer. 43 (2013) 22-29.
DOI: 10.1016/j.icheatmasstransfer.2013.02.009
Google Scholar
[17]
A. Amrani, N. Dihmani, S. Amraqui, A. Mezrhab. Numerical evaluation of natural convection heat transfer in a supply-air paziaud window, Computational Thermal Sciences. 6 (5) (2014) 383–395.
DOI: 10.1615/computthermalscien.2014011147
Google Scholar
[18]
M. Sankar, S. Kiran, G.K. Ramesh, O.D. Makinde. Natural convection in a non-uniformly heated vertical annular cavity, Defect and Diffusion Forum. 377 (2017) 189-199.
DOI: 10.4028/www.scientific.net/ddf.377.189
Google Scholar
[19]
Y. Liu and N. Phan-Thien. A complete conjugate conduction convection and radiation problem for a heated block in a vertical differentially heated square enclosure, Computational Mechanics. 24 (1999) 175-186.
DOI: 10.1007/s004660050450
Google Scholar
[20]
H. Bouali, A. Mezrhab, H. Amaoui, M. Bouzidi. Radiation—natural convection heat transfer in an inclined rectangular enclosure. International Journal of Thermal Sciences. 45 (2006) 553-566.
DOI: 10.1016/j.ijthermalsci.2005.10.001
Google Scholar
[21]
A. Mezrhab and L. Bchir. Radiation-natural convection interactions in partitioned cavities, International Journal of Numerical Methods for Heat and Fluid Flow. 9 (2) (1999) 186-203.
DOI: 10.1108/09615539810232880
Google Scholar
[22]
S. Amraqui, A. Mezrhab, C. Abid. Combined Natural Convection and Surface Radiation in Solar Collector Equipped with Partitions, Applied Solar Energy. 47 (1) (2011) 36-47.
DOI: 10.3103/s0003701x11010051
Google Scholar
[23]
S. Das, R. N. Jana, O. D. Makinde. Natural convection near a moving vertical plate with ramped heat and mass fluxes in the presence of thermal radiation, Defect and Diffusion Forum. 377( 2017), 211-232.
DOI: 10.4028/www.scientific.net/ddf.377.211
Google Scholar
[24]
S. V. Patankar. Numerical heat transfer and fluid flow. New York, NY: McGraw-Hill. (1980).
Google Scholar
[25]
H. Asan and L. Namli, Numerical simulation of buoyant flow in a roof of triangular cross section under winter day boundary conditions, Energy Buildings. 33 (2001) 753-757.
DOI: 10.1016/s0378-7788(01)00063-9
Google Scholar
[26]
A. Koca, Hakan F. Oztopb, Y. Varol. Numerical analysis of natural convection in shed roofs with eave of buildings for cold climates. Computers and Mathematics with Applications. 56 (2008) 3165-3174.
DOI: 10.1016/j.camwa.2008.07.012
Google Scholar
[27]
L.C. Chang, K.T. Yang, J.R. Lloyd. Radiation-natural convection intersections in two dimensional complex enclosures, Journal of Heat Transfer. 105 (1983) 89-95.
DOI: 10.1115/1.3245564
Google Scholar