Effect of Grain Refinement on the Elemental Composition and Nanohardness of the Surface Layers in AISI 316L Austenitic Steel Subjected to Ion-Plasma Hardening

Article Preview

Abstract:

We study the effect of the grain refinement on the elemental composition and nanohardness of the surface layers in AISI 316L austenitic steel processed by ion-plasma hardening. Ion-plasma hardening of the samples with (1) grain-subgrain (with high dislocation density) and (2) coarse-grained structures causes a surface hardening and formation of the composite layers with a thickness of about 20 μm. The nanohardness and depth profiles of elemental concentration of nitrogen, carbon and oxygen in the ion-plasma hardened layers depends on pretreatment regime of the steel specimens. Cold rolling causes an increase in the grain and subgrain boundaries fraction and dislocation density in steel specimens, provides more intensive accumulation of interstitial atoms in thin surface 5 μm-layer, leads to additional surface hardening and suppress carbon diffusion into depth of the specimens as compared with coarse-grained structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

267-272

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.L. Williamson, J.A. Davis, P.J. Wilbur, Effect of austenitic stainless steel composition on low-energy, high-flux, nitrogen ion beam processing, Surf. Coat. Technol. 103–104 (1998) 178–184.

DOI: 10.1016/s0257-8972(98)00389-2

Google Scholar

[2] F. Borgioli, E. Galvanetto, T. Bacci, Low temperature nitriding of AISI 300 and 200 series austenitic stainless steels, Vacuum 127 (2016) 51–60.

DOI: 10.1016/j.vacuum.2016.02.009

Google Scholar

[3] X.Y. Li, Low temperature plasma nitriding of 316 stainless steel – nature of S-phase and its thermal stability, Surf. Eng. 17 (2001) 147–152.

DOI: 10.1179/026708401101517746

Google Scholar

[4] T.L. Christiansen, M.A.J. Somers, Low temperature gaseous nitriding and carburizing of stainless steel, Surf. Interface Anal. 21 (2005) 445–455.

DOI: 10.1179/174329405x68597

Google Scholar

[5] T. Bell, Surface engineering of austenitic stainless steel, Surf. Eng. 18 (2002) 415–422.

Google Scholar

[6] V.G. Gavriljuk, H. Berns, High Nitrogen Steels, Springer, Berlin, (1999).

Google Scholar

[7] D. Manova, S. Mändl, H. Neumann, B. Rauschenbach, Influence of grain size on nitrogen diffusivity in austenitic stainless steel, Surf. Coat. Technol. 201 (2007) 6686–6689.

DOI: 10.1016/j.surfcoat.2006.09.104

Google Scholar

[8] W.P. Tong, N.R. Tao, Z.B. Wang, H.W. Zhang, J. Lu, K. Lu, The formation of ε-Fe3–2N phase in a nanocrystalline Fe, Scripta Mater. 50 (2004) 647–650.

DOI: 10.1016/j.scriptamat.2003.11.022

Google Scholar

[9] M. Laleh, F. Kargar, and M. Velashjerdi, Low-temperature nitriding of nanocrystalline stainless steel and its effect on improving wear and corrosion resistance, J. Mater. Eng. Perf. 22 (2013) 1304–1310.

DOI: 10.1007/s11665-012-0417-7

Google Scholar

[10] M. Jayalakshmi, Prashant Huilgol, B. Ramachandra Bhat, K. Udaya Bhat, Microstructural characterization of low temperature plasma-nitrided 316L stainless steel surface with prior severe shot peening, Mater. Des. 108 (2016) 448–454.

DOI: 10.1016/j.matdes.2016.07.005

Google Scholar

[11] A. Nishimoto, K. Akamatsu, Effect of pre-deforming on low temperature plasma nitriding of austenitic stainless steel, Plasma Process. Polym. 6 (2009) 306–309.

DOI: 10.1002/ppap.200930707

Google Scholar

[12] V.V. Budilov, R.D. Agzamov, K.N. Ramazanov, Ion nitriding in glow discharge with hollow cathode effect, Met. Sci. Heat Treat. 49 (2007) 358–361.

DOI: 10.1007/s11041-007-0065-y

Google Scholar

[13] L.E. Murr, Handbook of materials structures, properties, processing and performance, Springer, Berlin, (2015).

Google Scholar

[14] E.G. Astafurova, Yu.I. Chumlyakov, H.J. Maier, The effect of aluminum alloying on ductile-to-brittle transition in Hadfield steel single crystal, Int. J. Fra. 160 (2009) 143-149.

DOI: 10.1007/s10704-009-9414-8

Google Scholar

[15] S.J. Ji, L.Wang, J.C. Sun, Z.K. Hei, The effects of severe surface deformation on plasma nitriding of austenitic stainless steel, Surf. Coat. Technol. 195 (2005) 81–84.

DOI: 10.1016/j.surfcoat.2004.05.020

Google Scholar