Influence of Temperature of Severe Plastic Deformation and Aging on Microstructure, Mechanical Properties and Electrical Conductivitiy of the Cu-Cr-Zr Alloy

Article Preview

Abstract:

The article studies an influence of temperature of severe plastic deformation (SPD) and post-deformation heat treatment on microstructure, mechanical properties and thermal stability of the Cu-0.5Cr-0.2Zr alloy. The results demonstrate that strength is considerably increased to 900 MPa by high pressure torsion (HPT) at room temperature. Subsequent ageing at 450 °С during 1 hour leads to a decay of solid solution and an allocation of dispersion particles that further incrises strength to 900 MPa, restores electrical conductivity to 70% IACS (International annealed copper standard) and enhances thermal stability of the alloy. When deformation temperature is increased to 300°С, strength is 690 MPa that is lower than in the case of deformation at room temperature that is related to reversion process at deformation. Additional a aging does not lead to an increase of strength characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

273-277

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Fuxiang, M. Jusheng, N. Honglong, G. Zhiting, L. Chao, G. Shumei, Y. Xuetao, W. Tao, L. Hong, L. Huafen, Scr. Mater. 48 (2003).

DOI: 10.1016/s1359-6462(02)00353-6

Google Scholar

[2] W.X. Qi, J.P. Tu, F. Liu, Y.Z. Yang, N.Y. Wang, H.M. Lu, X.B. Zhang, S.Y. Guo, M. S. Liu, Mater. Sci. Eng. A. 343 (2003).

Google Scholar

[3] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Progress in Mater Sci 45 (2000).

Google Scholar

[4] R.Z. Valiev, I.V. Alexandrov, Bulk nanostructured metal materials: preparation, structure and properties (Akademkniga, Moscow, 2000).

Google Scholar

[5] R.K. Islamgaliev, K.M. Nesterov, Y. Champion, R.Z. Valiev, Mater. Sci. Eng. A. 63 (2014).

Google Scholar

[6] W. Wei, K.X. Wei, F. Wang, Q.B. Du, I.V. Alexandrov, J. Hu, Mater. Sci. Eng. A. 528 (2011).

Google Scholar

[7] G. Purcek, H. Yanar, O. Saray, I. Karaman , H.J. Wear 311 (2014).

Google Scholar

[8] Vinogradov A., Ishida N., Kitagawa K., Kopylov V., Acta Mater. 53 (2005).

Google Scholar

[9] Vinogradov A., Patlan V, Suzuki Y., Kitagawa K., Kopylov V., Acta Mater. 50 (2002).

Google Scholar

[10] D.V. Shangina, N.R. Bochvar, M.V. Gorshenkov, H. Yanar, G. Purcek, S.V., Mater. Sci. Eng. A. 650 (2016).

Google Scholar

[11] Azzeddine, B.Mehdi, L. Hennet, D. Thiaudière, B. Alili,M. Kawasaki, D. Bradai, T.G. Langdon, Mater. Sci. Eng. A597 (2014) 288–294.

DOI: 10.1016/j.msea.2013.12.092

Google Scholar

[12] B.B. Straumal, V. Pontikis, A.R. Kilmametov , A.A. Mazilkin , S.V. Dobatkin , B. Baretzky, Acta Materialia 122 (2017) 60-71.

DOI: 10.1016/j.actamat.2016.09.024

Google Scholar

[13] M.M. Abramova, N.A. Enikeev, R.Z. Valiev, A. Etienne, B. Radiguet,Y. Ivanisenko, X. Sauvage., Materials Letters 136 (2014) p.349–352.

DOI: 10.1016/j.matlet.2014.07.188

Google Scholar

[14] J.P. Tu, W.X. Qi, Y.Z. Yang, F.Liu, J.T. Zhang, G.Y. Gan, N.Y. Wang, X.B. Zhang, M.S. Liu, Wear 249 (2002).

Google Scholar

[15] N.Y. Tang, D.M.R. Taplin, G.L. Dunlop, Mater. Sci. Tech. 1 (1985).

Google Scholar

[16] N. Bochvar, Cr-Cu-Zr (Chromium-Copper-Zirconium). In G. Effenberg, S. Ilyenko, editors. Non-Ferrous Metal Systems. Part 2. Landolt-Börnstein - Group IV Physical Chemistry, Springer Berlin Heidelberg; V 11C2 (2007).

DOI: 10.1007/978-3-540-47000-7_19

Google Scholar