[1]
R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu and T.C. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res., 17(1) (2002) 5-8.
DOI: 10.1557/jmr.2002.0002
Google Scholar
[2]
R.Z. Valiev, A.V. Sergueeva, A.K. Mukherjee, The effect of annealing on tensile deformation behavior of nanostructured SPD titanium, Scripta Mater. 49 (2003) 669-674.
DOI: 10.1016/s1359-6462(03)00395-6
Google Scholar
[3]
X. Wu, F. Yuan, M. Yang, P. Jiang, C. Zhang, L. Chen, Y. Wei, E. Ma, Nanodomained Nickel Unite Nanocrystal Strength with Coarse-Grain Ductility, Sci. Rep. 5 (2015) 11728(1-10).
DOI: 10.1038/srep11728
Google Scholar
[4]
X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility, PNAS 112(47) (2016) 14501-14505.
DOI: 10.1073/pnas.1517193112
Google Scholar
[5]
R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Fundamentals of Superior Properties in Bulk NanoSPD Materials, Mater. Res. Lett. 4(1) (2016) 1-21.
DOI: 10.1080/21663831.2015.1060543
Google Scholar
[6]
P. Kumar, M. Kawasaki, T.G. Langdon, Review: Overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures, J. Mater. Sci. 51 (2016) 7-18.
DOI: 10.1007/s10853-015-9143-5
Google Scholar
[7]
R.Z. Valiev, A.P. Zhilyaev, T,G, Langdon, Bulk nanostructured materials: Fundamentals and applications. New Jersey: Wiley & Sons, 2014, 450p.
Google Scholar
[8]
Y. Wang, M. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metal, Nature 419 (2002) 912-915.
DOI: 10.1038/nature01133
Google Scholar
[9]
R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[10]
R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881-981.
DOI: 10.1016/j.pmatsci.2006.02.003
Google Scholar
[11]
A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.
DOI: 10.1016/j.pmatsci.2008.03.002
Google Scholar
[12]
R.Z. Valiev, I. Sabirov, A.P. Zhilyaev, T.G. Langdon, Bulk nanostructured metals for innovative applications, JOM 64(10) (2012) 1134-1142.
DOI: 10.1007/s11837-012-0427-9
Google Scholar
[13]
R.Z. Valiev, V.Y. Gertsman, O.A. Kaibyshev, On nature of grain boundary recovery, Phys. Stat. Sol. (a) 61 (1980) K95-97.
DOI: 10.1002/pssa.2210610247
Google Scholar
[14]
B-K. Kim, J.A. Szpunar, A.P. Zhilyaev, Annealing texture in thermal stability of ultrafinegrained Ni, Mater. Sci. Forum 408-412(I) (2002) 943-948.
DOI: 10.4028/www.scientific.net/msf.408-412.943
Google Scholar
[15]
https://imagej.nih.gov/ij/ and http://maud.radiographema.com.
Google Scholar
[16]
A.P. Zhilyaev, G. Ringot, Y. Huang, J.M. Cabrera, T.G. Langdon, Mechanical behavior and microstructure properties of titanium powder consolidated by high-pressure torsion, Mater. Sci. Eng. A 688 (2017) 498-504.
DOI: 10.1016/j.msea.2017.02.032
Google Scholar
[17]
K. Edalati, Z. Horita, H. Fujiwara, K. Ameyama, Cold Consolidation of Ball-Milled Titanium Powders Using High-Pressure Torsion, Metal. Mater. Trans. A 41 (2010) 3308-3317.
DOI: 10.1007/s11661-010-0400-6
Google Scholar
[18]
G. Wang, X. Li, Predicting Young's modulus of nanowires from first-principles calculations on their surface and bulk materials, J. Appl. Phys. 104 (2009) 113517.
DOI: 10.1063/1.3033634
Google Scholar