Influence of Inhomogeneity on Mechanical Properties of Commercially Pure Titanium Processed by HPT

Article Preview

Abstract:

Already for fifteen years many researchers have been trying to discover metallic materials with unusual combinations of strength and ductility: with high strength and enhanced ductility. This combination may be achieved through different ways: alloying, nanostructuring, etc. This report is an attempt to analyze the influence of inhomogeneity of different types (structural, phase and space) on mechanical properties of commercially pure titanium (bulk and powder) subjected to high-pressure torsion. Experimental results for HPT bulk and powder titanium have demonstrated that mechanical behavior of CP titanium strongly depends on phase inhomogeneity (alpha + omega phases), structural inhomogeneity (bimodal grain size distribution) and space inhomogeneity (retained porosity) in case of cold consolidated Ti powder. High strength in HPT bulk titanium due to the formation of hard omega phase during HPT processing at room temperature was detected. The strong omega phase transforms back to nanograined alpha phase domains during short annealing at elevated temperature. HPT consolidation of titanium powder leads to the formation of brittle specimens showing high strength but almost zero plasticity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

284-289

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu and T.C. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res., 17(1) (2002) 5-8.

DOI: 10.1557/jmr.2002.0002

Google Scholar

[2] R.Z. Valiev, A.V. Sergueeva, A.K. Mukherjee, The effect of annealing on tensile deformation behavior of nanostructured SPD titanium, Scripta Mater. 49 (2003) 669-674.

DOI: 10.1016/s1359-6462(03)00395-6

Google Scholar

[3] X. Wu, F. Yuan, M. Yang, P. Jiang, C. Zhang, L. Chen, Y. Wei, E. Ma, Nanodomained Nickel Unite Nanocrystal Strength with Coarse-Grain Ductility, Sci. Rep. 5 (2015) 11728(1-10).

DOI: 10.1038/srep11728

Google Scholar

[4] X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility, PNAS 112(47) (2016) 14501-14505.

DOI: 10.1073/pnas.1517193112

Google Scholar

[5] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Fundamentals of Superior Properties in Bulk NanoSPD Materials, Mater. Res. Lett. 4(1) (2016) 1-21.

DOI: 10.1080/21663831.2015.1060543

Google Scholar

[6] P. Kumar, M. Kawasaki, T.G. Langdon, Review: Overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures, J. Mater. Sci. 51 (2016) 7-18.

DOI: 10.1007/s10853-015-9143-5

Google Scholar

[7] R.Z. Valiev, A.P. Zhilyaev, T,G, Langdon, Bulk nanostructured materials: Fundamentals and applications. New Jersey: Wiley & Sons, 2014, 450p.

Google Scholar

[8] Y. Wang, M. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metal, Nature 419 (2002) 912-915.

DOI: 10.1038/nature01133

Google Scholar

[9] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[10] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881-981.

DOI: 10.1016/j.pmatsci.2006.02.003

Google Scholar

[11] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[12] R.Z. Valiev, I. Sabirov, A.P. Zhilyaev, T.G. Langdon, Bulk nanostructured metals for innovative applications, JOM 64(10) (2012) 1134-1142.

DOI: 10.1007/s11837-012-0427-9

Google Scholar

[13] R.Z. Valiev, V.Y. Gertsman, O.A. Kaibyshev, On nature of grain boundary recovery, Phys. Stat. Sol. (a) 61 (1980) K95-97.

DOI: 10.1002/pssa.2210610247

Google Scholar

[14] B-K. Kim, J.A. Szpunar, A.P. Zhilyaev, Annealing texture in thermal stability of ultrafinegrained Ni, Mater. Sci. Forum 408-412(I) (2002) 943-948.

DOI: 10.4028/www.scientific.net/msf.408-412.943

Google Scholar

[15] https://imagej.nih.gov/ij/ and http://maud.radiographema.com.

Google Scholar

[16] A.P. Zhilyaev, G. Ringot, Y. Huang, J.M. Cabrera, T.G. Langdon, Mechanical behavior and microstructure properties of titanium powder consolidated by high-pressure torsion, Mater. Sci. Eng. A 688 (2017) 498-504.

DOI: 10.1016/j.msea.2017.02.032

Google Scholar

[17] K. Edalati, Z. Horita, H. Fujiwara, K. Ameyama, Cold Consolidation of Ball-Milled Titanium Powders Using High-Pressure Torsion, Metal. Mater. Trans. A 41 (2010) 3308-3317.

DOI: 10.1007/s11661-010-0400-6

Google Scholar

[18] G. Wang, X. Li, Predicting Young's modulus of nanowires from first-principles calculations on their surface and bulk materials, J. Appl. Phys. 104 (2009) 113517.

DOI: 10.1063/1.3033634

Google Scholar