Superplasticity of Aerospace 7075 (Al-Zn-Mg-Cu) Aluminium Alloy Obtained by Severe Plastic Deformation

Article Preview

Abstract:

The 7075 (Al-Zn-Mg-Cu) aluminium alloy is the reference alloy for aerospace applications due to its specific mechanical properties at room temperature, showing excellent tensile strength and sufficient ductility. Formability at high temperature can be improved by obtaining superplasticity as a result of fine, equiaxed and highly misoriented grains prone to deform by grain boundary sliding (GBS). Different severe plastic deformation (SPD) processing routes such as ECAP, ARB, HPT and FSP have been considered and their effect on mechanical properties, especially at intermediate to high temperatures, are studied. Refined grains as fine as 100 nm and average misorientations as high as 39o allow attainment of high strain rate superplasticity (HSRSP) at lower than usual temperatures (250-300oC). It is shown that increasing misorientations are obtained with increasing applied strain, and increasing grain refinement is obtained with increasing processing stress. Thus, increasing superplastic strains at higher strain rates, lower stresses and lower temperatures are obtained with increasing processing strain and, specially, processing stress.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-44

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O.A. Ruano, O.D. Sherby, Rev. Phys. Appl. 23 (1988) 625-637.

Google Scholar

[2] R.Z. Valiev, R. K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45(2000) 103-189.

Google Scholar

[3] A.P Zhilyaev, M.D. Baró, T.G. Langdon, T.R. McNelley, Rev. Adv. Mater. Sci. 7 (2004) 41-49.

Google Scholar

[4] J.M. García-Infanta, A.P. Zhilyaev, A. Sharafutdinov, O.A. Ruano, F. Carreño, J. Alloys Comp. 473 (2009) 163–166.

Google Scholar

[5] P. Hidalgo, C.M. Cepeda-Jiménez, O.A. Ruano, and F. Carreño, Metal. Mater. Trans. A 41A (2010) 758-767.

Google Scholar

[6] C.M. Cepeda-Jiménez, J.M. García-Infanta, O.A. Ruano, F. Carreño, J. Alloys. Comp. 509 (2011) 8649– 8656.

DOI: 10.1016/j.jallcom.2011.06.070

Google Scholar

[7] C.M. Cepeda-Jiménez, J.M. García-Infanta, O.A. Ruano, F. Carreño, J. Alloys Comp. 509 (2011) 9589– 9597.

DOI: 10.1016/j.jallcom.2011.07.076

Google Scholar

[8] P. Hidalgo-Manrique, C.M. Cepeda-Jiménez, O.A. Ruano, F. Carreño, Mater. Sci. Eng. A 556 (2012) 287–294.

Google Scholar

[9] A. Orozco-Caballero, C.M. Cepeda-Jiménez, P. Hidalgo-Manrique, P. Rey, D. Gesto, D.Verdera, O.A. Ruano, F. Carreño, Mater. Chem. Phys. 142 (2013) 182-185.

DOI: 10.1016/j.matchemphys.2013.06.055

Google Scholar

[10] R.Z. Valiev, N.A. Krasilnikov and N.K. Tsenev, Mater. Sci. Eng. A, 137 (1991) 35-40.

Google Scholar

[11] V.M. Segal, Mater. Sci. Eng. A 197 (1995) 157-164.

Google Scholar

[12] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scripta Mater. 9 (1998) 1221-1227.

Google Scholar

[13] N.A. Smirnova, V.I. Levit, V.I. Pilyugin, R.I. Kuznetsov, L.S. Davydova, V.A. Sazonova, Fiz. Met. Metalloved. 61 (1986) 1170-1177.

Google Scholar

[14] A.P. Zhilyaev and T.G. Langdon, Prog. Mater. Sci. 53 (2008) 893-979.

Google Scholar

[15] R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee, Scripta Mater. 42 (2000) 163-168.

Google Scholar

[16] A. Orozco-Caballero, M. Álvarez-Leal, P. Hidalgo-Manrique, C. Cepeda-Jiménez M., O.A. Ruano, F. Carreño, Mater. Sci. Eng. A 680 (2017) 329–337.

DOI: 10.1016/j.msea.2016.10.113

Google Scholar

[17] A. Orozco-Caballero, M. Álvarez-Leal, D. Verdera, P. Rey, O.A. Ruano, F. Carreño, Mater. Des. 125 (2017) 116–125.

DOI: 10.1016/j.matdes.2017.03.081

Google Scholar

[18] A. Orozco-Caballero, O.A. Ruano, F. Carreño, Metall. Mater. Trans. A 48 (2017) 3980–3984.

Google Scholar

[19] A. Orozco-Caballero, O.A. Ruano, E.F. Rauch, F. Carreño, Mater. Des. 137 (2018) 128–139.

Google Scholar

[20] F.C. Liu, Z.Y. Ma, Mater. Sci. Eng. A 530 (2011) 548-558.

Google Scholar

[21] C.M. Cepeda-Jiménez, J.M. García-Infanta, E.F. Rauch, J-J. Blandin, O.A. Ruano, and F. Carreño, Metall. Mater. Trans. A 43 (2012) 4224-4236.

DOI: 10.1007/s11661-012-1206-5

Google Scholar

[22] P. Asadi, R.A. Mahdavinejad, S. Tutunchilar, Mater. Sci. Eng. A 528 (2011) 6469- 6477.

Google Scholar

[23] E. F. Rauch, M. Veron, Materialwiss. Werkstofftech. 36 (2005) 552-556.

Google Scholar

[24] E. F. Rauch, L. Dupuy, Arch. Metall. Mater. 50 (2005) 87-99.

Google Scholar

[25] J.K. Mackenzie, Biometrika 45 (1958) 229–240.

Google Scholar

[26] F. Wetscher, A. Vorhauer, R. Pippan, Mater. Sci Eng A 410–411 (2005) 213-216.

Google Scholar

[27] A. Bachmaier, M. Hafok, R. Pippan, Mater. Trans. 51 (2010) 8-13.

Google Scholar