[1]
R.Z. Valiev, A.P. Zhilyaev, T.G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications, Hoboken, Wiley, (2013).
DOI: 10.1002/9781118742679
Google Scholar
[2]
O.A. Kaibyshev, F.Z. Utyashev, Superplasticity: Microstructural Refinement and Superplastic Roll Forming, Futurepast, Arlington, (2005).
Google Scholar
[3]
Y.G. Ko, C.S. Lee, D.H. Shin, S.L. Semiatin, Low-temperature superplasticity of ultra-fine-grained Ti-4Al-4V processed by equal-channel angular pressing, Metall. Mater. Trans. A 37 (2006) 381-391.
DOI: 10.1007/s11661-006-0008-z
Google Scholar
[4]
R.Z. Valiev, R.K. Islamgaliev, I.P. Semenova, Superplasticity in nanostructured materials: new challenges, Mater. Sci. Eng. A 463 (2007) 2–7.
DOI: 10.1016/j.msea.2006.08.121
Google Scholar
[5]
A. Nazarova, R. Mulyukov, Yu. Tsarenko, V. Rubanik, A. Nazarov, Effect of ultrasonic treatment on the microstructure and properties of nanostructured nickel processed by high pressure torsion, Mater. Sci. Forum 667-669 (2011) 605-609.
DOI: 10.4028/www.scientific.net/msf.667-669.605
Google Scholar
[6]
A.A. Mukhametgalina, A.A. Samigullina, S.N. Sergeev, A.P. Zhilyaev, A.A. Nazarov, Y.R. Zagidullina, N.Y. Parkhimovich, V.V. Rubanik, Y.V. Tsarenko, Effect of ultrasonic treatment on the structure and microhardness of ultrafine grained nickel processed by high pressure torsion, Letters on materials 7 (2017).
DOI: 10.1016/j.ultras.2017.09.005
Google Scholar
[7]
A.A. Samigullina, A.A. Nazarov, R.R. Mulyukov, Yu.V. Tsarenko, V.V. Rubanik, Effect of ultrasonic treatment on the strength and ductility of bulk nanostructured nickel processed by equal-channel angular pressing, Rev. Adv. Mater. Sci. 39 (2014).
DOI: 10.22226/2410-3535-2012-4-214-217
Google Scholar
[8]
A.A. Nazarov, Molecular dynamics simulation of the relaxation of a grain boundary disclination dipole under ultrasonic stresses, Letters on materials 6 (2016) 179-182.
DOI: 10.22226/2410-3535-2016-3-179-182
Google Scholar
[9]
D.V. Bachurin, R.T. Murzaev, J.A. Baimova, A.A. Samigullina, K.A. Krylova, Ultrasound influence on behavior of disordered dislocation systems in a crystal with non-equilibrium grain boundaries, Letters on materials 6 (2016) 183-188.
DOI: 10.22226/2410-3535-2016-3-183-188
Google Scholar
[10]
M.M. Myshlyaev, V.V. Shpeizman, V.V. Klubovich, M.M. Kulak, Y. Lyu, Effect of ultrasound on the characteristics of superplastic deformation, Phys. Solid State 57 (2015) 2039–(2044).
DOI: 10.1134/s1063783415100236
Google Scholar
[11]
E. Ervin, Quantitative Metallography, in: ASM Handbook, vol. 9. Metallography and Microstructures, ASM International, 1998, pp.187-220.
Google Scholar
[12]
ASTM E112-10, Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, (2010).
Google Scholar
[13]
G.A. Salishchev, O.R. Valiakhmetov, R.M. Galeyev, F.H. Froes, Characterization of submicron-grained Ti-6Al-4V sheets with enhanced superplastic properties, Mater. Sci. Forum 447-448 (2004) 441-446.
DOI: 10.4028/www.scientific.net/msf.447-448.441
Google Scholar
[14]
J. Fu, H. Ding, Y. Huang, P.H.R. Pereira, W. Zhang, T.G. Langdon, Grain refining of a Ti-6Al-4V alloy by high-pressure torsion and low temperature superplasticity, Letters on materials 5 (2015) 281-286.
DOI: 10.22226/2410-3535-2015-3-281-286
Google Scholar
[15]
I.P. Semenova, G.I. Raab, E.R. Golubovskiy, R.R. Valiev, Service properties of ultrafine-grained Ti-6Al-4V alloy at elevated temperature, J. Mater. Sci. 48 (2013) 4806-4812.
DOI: 10.1007/s10853-013-7305-x
Google Scholar
[16]
A.V. Kulyemin, Ultrasound and Diffusion in Metals, Metallurgia Publ., Moscow, 1978 (In Russian).
Google Scholar