[1]
A. M. Boullier, Y. Gueguen, Origin of some mylonites by superplastic flow, Contrib. to Mineral. And Petrol. 50 (1975) 93-104.
DOI: 10.1007/bf00373329
Google Scholar
[2]
D.L. Goldsby, D. L. Kohlstedt, W.B. Durham, Rheology of water and ammonia-water ices, Proc. Lunar Planet. Sci. Conf., 24th (1993) 543-544.
Google Scholar
[3]
C.E. Pearson, Viscous properties of extruded eutectic alloys of lead-tin and bismuth-tin, J. Inst. Metals 54(1934)111-124.
Google Scholar
[4]
Prokop Závada, K. Schulmann, J. Konopásek, S. Ulrich O. Lexa, Extreme ductility of feldspar aggregates—Melt-enhanced grain boundary sliding and creep failure: Rheological implications for felsic lower crust, Journal of Geophysical Research 112 (2007).
DOI: 10.1029/2006jb004820
Google Scholar
[5]
T. Kenkmann, G. Dresen, Dislocation microstructure and phase distribution in a lower crustal shear zone – an example from the Ivrea-Zone, Italy. International Journal of Earth Sciences 91 (2002) 445–458.
DOI: 10.1007/s00531-001-0236-9
Google Scholar
[6]
A. Dimanov, E. Rybacki, R. Wirth, G. Dresen, Creep and strain-dependent microstructures of synthetic anorthite-diopside aggregates, Journal of structural geology 29 (2007)1049 – 1069.
DOI: 10.1016/j.jsg.2007.02.010
Google Scholar
[7]
P. Duval, M. Montagnat, Comment on 'Super plastic deformation of ice: Experimental observations', by D. L. Goldsby and D. L. Kohlstedt. Journal of Geophysical Research: Solid earth 107 (2002) 4-1 – 4-2.
DOI: 10.1029/2001jb000946
Google Scholar
[8]
D.L. Goldsby, D. L. Kohlstedt,Superplastic deformation of ice: Experimental observations, Journal Geophysical Research 106 (2001) 11017-11030.
DOI: 10.1029/2000jb900336
Google Scholar
[9]
K.A. Padmanabhan, J. Schlipf, Model for grain boundary sliding and its relevance to optical structural superplasticity Part 1-Theory, Mater SciTechnol 12 (1996) 391-399.
DOI: 10.1179/026708396790165920
Google Scholar
[10]
D. Wolf, Structure-energy correlation for grain boundaries in F.C.C. metals—III. Symmetrical tilt boundaries, Acta Metall. Mater. 38 (1990) 781–790.
DOI: 10.1016/0956-7151(90)90030-k
Google Scholar
[11]
M.R. Basariya, N.K. Mukhopadhay, S. Sripathi, K.A. Padmanabhan, Grain size softening in intermetallics, Journal of Alloys and Compounds 673 (2016) 199-204.
DOI: 10.1016/j.jallcom.2016.02.258
Google Scholar
[12]
J.H. Gittus, Creep, Viscoelasticity and Creep Fracture in Solids. Applied Science, London, (1975).
Google Scholar
[13]
J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion and related problems,Proc. Roy. Soc. A 241 (1957) 376–396.
Google Scholar
[14]
S. Sripathi, K.A. Padmnabhan, On the experimental validation of a mesoscopic grain boundary sliding-controlled flow model for structural superplasticity, J Material Science 49 (2014) 199-210.
DOI: 10.1007/s10853-013-7693-y
Google Scholar
[15]
H.J. Frost, M.F. Ashby, Deformation-mechanism maps: the plasticity and creep of metals and ceramics,Pergamon Press, Oxford, UK (1982).
Google Scholar
[16]
L.N. Hansen, M.E. Zimmermann, D.L. Kohlstedt, Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic‐preferred orientation, Journal of Geophysical Research: Solid earth 116 (2011) 1978-(2012).
DOI: 10.1029/2011jb008220
Google Scholar
[17]
S.M. Schmid, Rheological evidence for changes in the deformation mechanism of Solenhofen limestone towards low stresses, Tectonophysics 31(1976) T21-T28.
DOI: 10.1016/0040-1951(76)90160-8
Google Scholar
[18]
A.R. Kushnir, L.A. Kennedy, S. Misra, P. Benson, J.C. White, The mechanical and microstructural behaviour of calcite-dolomite composites: An experimental investigation, Journal of Structural Geology 70 (2015) 200-216.
DOI: 10.1016/j.jsg.2014.12.006
Google Scholar
[19]
C.A. Middleton, P.M. Grindrod P.R. Sammonds, The effect of rock particles and D2O replacement on the flow behaviour of ice, Philosophical Transactions of the Royal society A 375 (2017) 2086-3006.
DOI: 10.1098/rsta.2015.0349
Google Scholar
[20]
T.H. Jacka, The time and strain required for development of minimum strain rates in ice, Cold Regions Science and Technology 8 (1984) 261-268.
DOI: 10.1016/0165-232x(84)90057-0
Google Scholar
[21]
D.M. Cole, Strain-rate and grain-size effects in ice, Journal of Glaciology, 33(1987) 274-280.
DOI: 10.1017/s0022143000008844
Google Scholar
[22]
M.Herwegh, X. Xiao, B. Evans, The effect of dissolved magnesium on diffusion creep in calcite, Earth and Planetary Science Letters 212 (2003) 457-470.
DOI: 10.1016/s0012-821x(03)00284-x
Google Scholar
[23]
D. Freund, Z. Wang, E. Rybacki, G. Dresen, High-temperature creep of synthetic calcite aggregates: influence of Mn-content. Earth and Planetary Science Letters 226 (2004) 433-448.
DOI: 10.1016/j.epsl.2004.06.020
Google Scholar