Superplastic Flow and Micro-Mechanical Response of Ultrafine-Grained Materials

Article Preview

Abstract:

The bulk ultrafine-grained (UFG) materials usually show superior mechanical properties. Since the occurrence of superplastic flow generally requires a grain size smaller than ~10 μm, it is anticipated that materials processed by severe plastic deformation (SPD) will exhibit superplastic ductilities when pulled in tension at elevated temperatures. Recent advances in the processing of UFG metals have provided an opportunity to extend the understanding of superplastic flow behavior to include UFG materials with submicrometer grain sizes. Recent studies showed the UFG materials demonstrated the development of plasticity in micro-mechanical response at room temperature by the significant changes in microstructure attributed to high-pressure torsion (HPT). Accordingly, this study summarizes recent results on excellent ductility and plasticity in a UFG Zn-22% Al alloy. Specifically, the alloy demonstrated the occurrence of exceptional superplastic flow at high temperature after equal-channel angular pressing and HPT and excellent room temperature plasticity of the alloy after HPT where the plasticity was evaluated by the nanoindentation technique. The significance of purity of the alloy is also considered for enhancing the ductility at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-14

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, 58(4) JOM (2006) 33-39.

DOI: 10.1007/s11837-006-0213-7

Google Scholar

[2] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881-981.

DOI: 10.1016/j.pmatsci.2006.02.003

Google Scholar

[3] A. P. Zhilyaev, T. G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[4] T.G. Langdon, A unified approach to grain boundary sliding in creep and superplasticity, Acta Metall. Mater. 42 (1994) 2437-2443.

DOI: 10.1016/0956-7151(94)90322-0

Google Scholar

[5] S. Shim, J.-i. Jang, G.M. Pharr, Extraction of flow properties of single-crystal silicon carbide by nanoindentation and finite-element simulation, Acta Mater. 56 (2008) 3824-3832.

DOI: 10.1016/j.actamat.2008.04.013

Google Scholar

[6] M. Kawasaki, T.G. Langdon, Grain boundary sliding in a superplastic zinc-aluminum alloy processed using severe plastic deformation, Mater. Trans. 49 (2008) 84-89.

DOI: 10.2320/matertrans.me200720

Google Scholar

[7] M. Kawasaki, T.G. Langdon, Developing superplasticity and a deformation mechanism map for the Zn–Al eutectoid alloy processed by high-pressure torsion, Mater. Sci. Eng. A 528 (2011) 6140-6145.

DOI: 10.1016/j.msea.2011.04.053

Google Scholar

[8] K. Higashi, M. Mabuchi, T.G. Langdon, High-strain-rate superplasticity in metallic materials and the potential for ceramic materials, ISIJ Intl. 36 (1996) 1423-1438.

DOI: 10.2355/isijinternational.36.1423

Google Scholar

[9] M. Kawasaki, T.G. Langdon, Review: achieving superplastic properties in ultrafine-grained materials at high temperatures, J. Mater. Sci. 51 (2016) 19–32.

DOI: 10.1007/s10853-015-9176-9

Google Scholar

[10] P.H.R. Pereira, Y. Huang, M. Kawasaki, T.G. Langdon, An examination of the superplastic characteristics of Al–Mg–Sc, alloys after processing, J. Mater. Res. 22 (2017) 4541-4553.

DOI: 10.1557/jmr.2017.286

Google Scholar

[11] I.-C. Choi, Y.-J. Kim, B. Ahn, M. Kawasaki, T.G. Langdon, J.-I. Jang, Evolution of plasticity, strain-rate sensitivity and the underlying deformation mechanism in Zn-22% Al during high-pressure torsion, Scripta Mater. 75 (2014) 102-105.

DOI: 10.1016/j.scriptamat.2013.12.003

Google Scholar

[12] M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Fabrication of submicrometer-grained Zn-22% Al by torsion straining, J. Mater. Res. 11 (1996) 2128-2130.

DOI: 10.1557/jmr.1996.0270

Google Scholar

[13] M. Furukawa, Y. Ma, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Microstructural characteristics and superplastic ductility in a Zn-22% Al alloy with submicrometer grain size, Mater. Sci. Eng. A241 (1998) 122-128.

DOI: 10.1016/s0921-5093(97)00481-4

Google Scholar

[14] T. Tanaka, H. Watanabe, M. Kohzu, K. Higashi, Microstructure and superplastic properties at room temperature in Zn-22Al alloy after equal-channel-angular extrusion, Mater. Sci. Forum 447-448 (2004) 489-496.

DOI: 10.4028/www.scientific.net/msf.447-448.489

Google Scholar

[15] P. Kumar, C. Xu, T.G. Langdon, The significance of grain boundary sliding in the superplastic Zn–22% Al alloy after processing by ECAP, Mater. Sci. Eng. A 410–411 (2005) 447-450.

DOI: 10.1016/j.msea.2005.08.092

Google Scholar

[16] T.G. Langdon, Seventy-five years of superplasticity: historic developments and new opportunities, J. Mater. Sci. 44 (2009) 5998-6010.

DOI: 10.1007/s10853-009-3780-5

Google Scholar

[17] M. Kawasaki, B. Ahn, P. Kumar, J.-i. Jang, T.G. Langdon, Nano- and micro-mechanical properties of ultrafine-grained materials processed by severe plastic deformation techniques, Adv. Eng. Mater. 19 (2017) 1600578(1-17).

DOI: 10.1002/adem.201600578

Google Scholar

[18] T. Uesugi, M. Kawasaki, M. Ninomiya, Y. Kamiya, Y. Takigawa, K. Higashi, Significance of Si impurities on exceptional room-temperature superplasticity in a high-purity Zn-22%-Al alloy, Mater. Sci. Eng. A 645 (2015) 47-56.

DOI: 10.1016/j.msea.2015.07.087

Google Scholar