Effect of Homogenization Treatment on Superplastic Properties of Aluminum Based Alloy with Minor Zr and Sc Additions

Article Preview

Abstract:

Effect of one-step and two-step homogenization treatment on precipitation of Al3(Sc,Zr) dispersoids, grain structure after annealing of cold rolled sheets and superplastic behaviour of a novel Al-Mg based alloy were studied. Heterogeneous nucleation of Al3(Sc,Zr) phase on dislocations and subboundaries dominated at one-step annealing and both homogeneous and heterogeneous nucleation of Al3(Sc,Zr) were observed at two-step annealing modes. It was shown that two-step treatment mode provides high density of Al3(Sc,Zr) precipitates and 650 % of elongation at the constant strain rate of 10-2 s-1 in the studied alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-90

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.G Davydov T.D Rostova V.V Zakharov Yu.A Filatov V.I Yelagin, Scientific principles of making an alloying addition of scandium to aluminium alloys, Materials Science and Engineering A Volume 280, Issue 1, 15 March 2000, 30-36.

DOI: 10.1016/s0921-5093(99)00652-8

Google Scholar

[2] T.Dorin, M. Ramajayam, J. Lamb, T. Langan, Effect of Sc and Zr additions on the microstructure/strength of Al-Cu binary alloys, Materials Science and Engineering A 707 (2017) 58–64.

DOI: 10.1016/j.msea.2017.09.032

Google Scholar

[3] HE Yong-dong, ZHANG Xin-ming, YOU Jiang-hai, Effect of minor Sc and Zr on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy, Transactions of Nonferrous Metals Society of China 16 (2006) 1228-1235.

DOI: 10.1016/s1003-6326(06)60406-8

Google Scholar

[4] A.M. Samuel, S.A. Alkahtani, H.W. Doty, F.H. Samuel, Role of Zr and Sc addition in controlling the microstructure and tensile properties of aluminum–copper based alloys, Materials and Design 88 (2015) 1134–1144.

DOI: 10.1016/j.matdes.2015.09.090

Google Scholar

[5] Oleg Sitdikov, Elena Avtokratova Taku Sakai, Microstructural and texture changes during equal channel angular pressing of an Al–Mg–Sc alloy, Journal of Alloys and Compounds Volume 648, 5 November 2015, 195-204.

DOI: 10.1016/j.jallcom.2015.06.029

Google Scholar

[6] E.Avtokratova, O. Sitdikov, M. Markushev, R. Mulyukov, Extraordinary high-strain rate superplasticity of severely deformed Al–Mg–Sc–Zr alloy, Materials Science and Engineering A 538 (2012) 386–390.

DOI: 10.1016/j.msea.2012.01.041

Google Scholar

[7] Yongyi Peng, Shu Li, Ying Deng, Hua Zhou, Guofu Xu, Zhimin Yin, Synergetic effects of Sc and Zr microalloying and heat treatment on mechanical properties and exfoliation corrosion behavior of Al-Mg-Mn alloys, Materials Science & Engineering A 666 (2016).

DOI: 10.1016/j.msea.2016.04.029

Google Scholar

[8] Ling-Mei Wu, Wen-Hsiung Wang, Yung-Fu Hsu, Shan Trong, Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al-Zn-Mg-Sc-Zr alloy, Journal of Alloys and Compounds 456 (2008) 163-169.

DOI: 10.1016/j.jallcom.2007.02.054

Google Scholar

[9] Smolej, B. Skaza, E. Slasek, Influence of Scandium Additions and Various Alloy Sheet Thickness on the Superplastic Properties of Al–Mg and Al–Mg–Mn Alloys // Proceedings of the 12th International Conference on Aluminium Alloys, September 5–9, 2010, Yokohama, Japan, The Japan Institute of Light Metals 890–895.

DOI: 10.2464/jilm.69.166

Google Scholar

[10] O. Sitdikov, R. Garipova, E. Avtokratova, O. Mukhametdinova, M. Markushev, Effect of temperature of isothermal multidirectional forging on microstructure development in the Al-Mg alloy with nano-size aluminides of Sc and Zr, Journal of Alloys and Compounds (2018).

DOI: 10.1016/j.jallcom.2018.02.277

Google Scholar

[11] J.C. Williams, E.A. Starke, Progress in structural materials for aerospace systems. Acta Materialia, V.51, 2003, 5775-5799.

Google Scholar

[12] Z.Y. Ma, R.S. Mishra, M.W. Mahoney, R. Grimes, High strain rate superplasticity in friction stir processed Al-Mg-Zr alloy, Materials Science and Engineering A 351 (2003) 148-153.

DOI: 10.1016/s0921-5093(02)00824-9

Google Scholar

[13] M. Eddahbi, O.A. Ruano, Deformation behaviour of an Al-6%Cu-0.4%Zr superplastic alloy containing a gradient of texture, Journal of Alloys and Compounds 403 (2005) 176–185.

DOI: 10.1016/j.jallcom.2005.05.015

Google Scholar

[14] S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T.G. Langdon, Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al–Mg alloys, Acta Materialia 50 (2002) 553–564.

DOI: 10.1016/s1359-6454(01)00368-8

Google Scholar

[15] D.Y. Maeng , J.H. Lee , S.I. Hong, The effect of transition elements on the superplastic behavior of Al-Mg alloys, Materials Science and Engineering A 357 (2003) 188-195.

DOI: 10.1016/s0921-5093(03)00160-6

Google Scholar

[16] A.D. Kotov, A.V. Mikhaylovskaya, A.A. Borisov, O.A. Yakovtseva, V.K. Portnoy, High-strain-rate superplasticity of the Al–Zn–Mg–Cu alloys with Fe and Ni additions, Physics of Metals and Metallography 118 (2017) 913-921.

DOI: 10.1134/s0031918x1709006x

Google Scholar

[17] A.V. Mikhaylovskaya, O.A. Yakovtseva, V.V. Cheverikin, A.D. Kotov, V.K. Portnoy, Superplastic behaviour of Al-Mg-Zn-Zr-Sc-based alloys at high strain rates, Materials Science and Engineering A 659 (2016) 225-233.

DOI: 10.1016/j.msea.2016.02.061

Google Scholar

[18] A.D. Kotov, A.V. Mikhaylovskaya, M.S. Kishchik, A.A. Tsarkov, S.A. Aksenov, V.K. Portnoy, Superplasticity of high-strength Al-based alloys produced by thermomechanical treatment, Journal of Alloys and Compounds 688 (2016) 336–344.

DOI: 10.1016/j.jallcom.2016.07.045

Google Scholar

[19] Shih–Wei, Jien–Wei Yeh. Superplasticity of 5083 alloys with Zr and Mn addition produced by reciprocating extrusion. Janyary 2007 // Materials Science and Engineering A 460–461 (2007) 409–419.

DOI: 10.1016/j.msea.2007.01.121

Google Scholar

[20] Keith E. Knipling, David C. Dunand, David N. Seidman, Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600 °C, Acta Materialia 56 (2008) 1182–1195.

DOI: 10.1016/j.actamat.2007.11.011

Google Scholar

[21] Keith E. Knipling, David C. Dunand, David N. Seidman, Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–425 °C, Acta Materialia 56 (2008) 114–127.

DOI: 10.1016/j.actamat.2007.09.004

Google Scholar

[22] A.V. Mikhaylovskaya, V. K. Portnoy, A. Mochugovskiy, M. Zadorozhnyy, I. Golovin, Effect of homogenisation treatment on precipitation, recrystallisation and properties of Al – 3% Mg – TM alloys (TM=Mn, Cr, Zr), Materials&Design 109, 5 (2016).

DOI: 10.1016/j.matdes.2016.07.010

Google Scholar

[23] A. V. Mikhaylovskaya, A. D. Kotov, V. S. Levchenko and V. K. Portnoy The study of the technology parameters on the superplasticity of the new Al–Zn–Mg–Cu–Ni–Zr base alloy Mat.-wiss. u.Werkstofftech, 822–827, September (2014).

DOI: 10.1002/mawe.201400287

Google Scholar

[24] Yudai Miyake, Yukio Sato, Ryo Teranishi, Kenji Kaneko, Effect of heat treatments on the microstructure and formability of Al-Mg-Mn-Sc-Zr alloy, Micron 101 (2017) 151-155.

DOI: 10.1016/j.micron.2017.07.003

Google Scholar

[25] J. D. Robson, A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium, Acta Materialia 52 (2004) 1409−1421.

DOI: 10.1016/j.actamat.2003.11.023

Google Scholar

[26] LÜ Xin-yu, GUO Er-jun, Paul Rometsch, Wang Li-juan, Effect of one-step and two-step homogenization treatments on distribution of Al3Zr dispersoids in commercial AA7150 aluminium alloy, Transactions of Nonferrous Metals Society of China 22 (2012).

DOI: 10.1016/s1003-6326(11)61512-4

Google Scholar

[27] S.H. Mousavi Anijdan, D.Kang, N.Singh, M.Gallerneault, Precipitation behavior of strip cast Al–Mg–0.4Sc–0.15Zr alloy under single and multiple-stage aging processes, Materials Science and Engineering A 640 (2015) 275–279.

DOI: 10.1016/j.msea.2015.06.006

Google Scholar

[28] A.V. Mikhaylovskaya, A.G. Mochugovskiy, V.S. Levchenko, N.Yu. Tabachkova, W. Mufalo, V.K. Portnoy, Precipitation behavior of L12 Al3Zr phase in Al-Mg-Zr alloy, Materials Characterization 139 (2018) 30–37.

DOI: 10.1016/j.matchar.2018.02.030

Google Scholar

[29] A.A. Kishchik, A.V. Mikhaylovskaya, A.D. Kotov, V.K. Portnoy, Al-Mg-Fe-Ni based alloy for high strain rate superplastic forming, Materials Science and Engineering A (2018).

DOI: 10.1016/j.msea.2018.01.099

Google Scholar

[30] Guofu Xu, Xiaowu Cao, Tao Zhang, Yulu Duan, Xiaoyan Peng, Ying Deng, Zhimin Yin, Achieving high strain rate superplasticity of Al-Mg-Sc-Zr alloy by a new asymmetrical rolling technology, Materials Science & Engineering A 672 (2016) 98-107.

DOI: 10.1016/j.msea.2016.06.070

Google Scholar

[31] Mengjia Li, Qianglin Pan, Yunjia Shi, Xue Sun, Hao Xiang, High strain rate superplasticity in an Al-Mg-Sc-Zr alloy processed via simple rolling, Materials Science & Engineering A 687 (2017) 298-305.

DOI: 10.1016/j.msea.2017.01.091

Google Scholar

[32] Y.L. Duan, L.Tang, Y.Deng, X.W. Cao, G.F.Xu, Z.M. Yin, Superplastic behavior and microstructure evolution of a new Al-Mg- Sc-Zr alloy subjected to a simple thermomechanical processing, Materials Science&Engineering A 669 (2016) 205–217.

DOI: 10.1016/j.msea.2016.05.086

Google Scholar

[33] H.Xiang, Q.L. Pan, X.H.Yu, X.Huang, X.Sun, X.D. Wang, M.J.Li, Z.M. Yin, Superplasticity behaviors of Al-Zn-Mg-Zr cold-rolled alloy sheet with minor Sc addition, Materials Science & Engineering A 676 (2016) 128-137.

DOI: 10.1016/j.msea.2016.08.109

Google Scholar

[34] Bo Li, Qinglin Pan, Xing Huang, Zhimin Yin, Microstructures and properties of Al–Zn–Mg–Mn alloy with trace amounts of Sc and Zr, Materials Science & Engineering A 616 (2014) 219–228.

DOI: 10.1016/j.msea.2014.08.024

Google Scholar