[1]
F.Guo, D.Zhang, X.Yang, et al., Microstructure and texture evolution of AZ31 magnesium alloy during large strain hot rolling, Trans. Nonferrous Met. Soc. China 25 (2015) 14−21.
DOI: 10.1016/s1003-6326(15)63573-7
Google Scholar
[2]
Q. Wang, B. Jiang, A.Tanga, et al., Ameliorating the mechanical properties of magnesium alloy: Role of texture, Mater. Sci. Eng. A 689 (2017) 395-403.
Google Scholar
[3]
M. Kohzu, K. Kii, Y.Nagata, et al., Texture randomization of AZ31 magnesium alloy sheet for improvement of cold formability by combination of rolling and high temperature annealing, J. Jpn. Inst. Light Met. 60-5 (2010) 237-243.
DOI: 10.2464/jilm.60.237
Google Scholar
[4]
A.A. Luo, Magnesium casting technology for structural applications, J. Magnes. Alloys 1 (2013) 2-22.
Google Scholar
[5]
T.Mukai, M.Yamanoi, H.Watanabe, et al., Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure, Scr. Mater. 45 (2001) 89-94.
DOI: 10.1016/s1359-6462(01)00996-4
Google Scholar
[6]
Z.Yu, H.Choo, Z.Feng, et al., Influence of thermo-mechanical parameters on texture and tensile behavior of friction stir processed Mg alloy, Scr. Mater. 63 (2010) 1112-1115.
DOI: 10.1016/j.scriptamat.2010.08.016
Google Scholar
[7]
K. Matsubara, Y. Miyahara, Z. Horita, et al., Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP, Acta Mater. 51 (2003) 3073–3084.
DOI: 10.1016/s1359-6454(03)00118-6
Google Scholar
[8]
J.A.delValle, P.Rey, D.Gesto, et al., Mechanical properties of ultra-fine grained AZ91 magnesium alloy processed by friction stir processing, Mater. Sci. Eng. A 628 (2015) 198–206.
DOI: 10.1016/j.msea.2015.01.030
Google Scholar
[9]
T.Nakamura, M.Hiraiwa, Y.Tomizawa, Development of Friction-Assisted Extrusion Process for Producing Thin Metal Strips, Trans. Jpn. Soc. Mech. Eng. C 59-557 (1993) 193-198.
Google Scholar
[10]
M. Ohashi, T. Endo, T. Sakai, Effect of Initial Grain Size on Dynamic Recrystallization of Pure Nickel, J. Jpn. Inst. Met. 54 (1990) 435-441.
Google Scholar
[11]
C.I. Chang, C.J. Lee, J.C. Huang, Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys, Scr. Mater. 51 (2004) 509-514.
DOI: 10.1016/j.scriptamat.2004.05.043
Google Scholar
[12]
T. Krajňák, P.Minárik, J.Gubicza, et al., Influence of equal channel angular pressing routes on texture, microstructure and mechanical properties of extruded AX41 magnesium alloy, Mater. Charact. 123 (2017) 282-293.
DOI: 10.1016/j.matchar.2016.11.044
Google Scholar
[13]
X.Huang, Y.Chino, M,Yuasa, et al., Microstructure and mechanical properties of AZX912 magnesium alloy extruded at different temperatures, Mater. Sci. Eng. A 679 (2017) 162-171.
DOI: 10.1016/j.msea.2016.10.032
Google Scholar
[14]
D.C. Foley, M.AI-Maharbi, K.T. Hartwig, et al., Grain refinement vs. crystallographic texture: Mechanical anisotropy in a magnesium alloy, Scr. Mater. 64 (2011) 193–196.
DOI: 10.1016/j.scriptamat.2010.09.042
Google Scholar
[15]
D.Liu, Z.Liu, E.Wang, Effect of rolling reduction on microstructure, texture, mechanical properties, and mechanical anisotropy of AZ31 magnesium alloys, Mater. Sci. Eng. A 612 (2014) 208-213.
DOI: 10.1016/j.msea.2014.06.034
Google Scholar
[16]
J.Suh, J.V-Hernández, D.Letzig, et al., Enhanced mechanical behavior and reduced mechanical anisotropy of AZ31 Mg alloy sheet processed by ECAP, Mater. Sci. Eng. A 650 (2016) 523–529.
DOI: 10.1016/j.msea.2015.09.058
Google Scholar
[17]
W.-Y.Kim, S.Hanada, T.Takasugi, Flow behavior and microstructure of Co3Ti intermetallic alloy during superplastic deformation, Acta Mater. 46 (1998) 3593-3604.
DOI: 10.1016/s1359-6454(98)00029-9
Google Scholar