Superplasticity of Al-Mg-Zr Alloy

Article Preview

Abstract:

The microstructure and superplasticity of the thermomechanically proceeded sheets of Al - 3wt.%Mg - 0.25wt.%Zr were investigated. High density of L12-structured fine dispersoids of Al3Zr metastable phase was observed by TEM analysis. Alloy demonstrated high recrystallization resistance at elevated temperature due to Al3Zr dispersoids. The tensile tests were carried out in a temperature range of 440-500 °C and a strain rate of 1×10-3 to 1×10-2 s-1. The maximum elongation to failure of 370% was observed at 480 °C at the constant strain rate values of 2×10-3 and 5×10-3 s-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-119

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.G. Langdon, Achieving superplasticity in ultrafine-grained metals, Mechanics of Materials 67 (2013) 2-8, https://doi.org/10.1016/j.mechmat.2013.06.005.

DOI: 10.1016/j.mechmat.2013.06.005

Google Scholar

[2] T. G. Nieh, J. Wadsworth, O. D. Sherby, Superplasticity in Metals and Ceramics, frst ed., Cambridge University Press, Cambridge, (1997).

Google Scholar

[3] K. Kannan, C.H. Johnson, and C.H. Hamilton, A Study of Superplasticity in a Modified 5083 Al-Mg-Mn Alloy, Metallurgical and materials transactions A, 29A (1998) 1220, https://doi.org/10.1007/s11661-998-0248-1.

DOI: 10.1007/s11661-998-0248-1

Google Scholar

[4] D.Y. Maeng, J.H. Lee, S.I. Hong, The effect of transition elements on the superplastic behavior of Al-Mg alloys, Materials Science and Engineering: A, 357 (2003) 188 – 195, https://doi.org/10.1016/S0921-5093(03)00160-6.

DOI: 10.1016/s0921-5093(03)00160-6

Google Scholar

[5] R. Verma, A.K. Ghosh, S. Kim, C. Kim, Grain refinement and superplasticity in 5083 Al, Materials Science and Engineering: A 191 (1995) 143-150, https://doi.org/10.1016/0921-5093(94)09644-9.

DOI: 10.1016/0921-5093(94)09644-9

Google Scholar

[6] T.G. Nieh and J. Wadsworth, Effects of Zr on the High Strain- Rate Superplasticity of 2124 Al, Scripta Metallurgica, 28 (1993) 1119-1124, https://doi.org/10.1016/0956-716X(93)90020-S.

DOI: 10.1016/0956-716x(93)90020-s

Google Scholar

[7] S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T.G. Langdon, Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al–Mg alloys, Acta Materialia 50 (2002).

DOI: 10.1016/s1359-6454(01)00368-8

Google Scholar

[8] Ying Wang, Qing-lin Pan, Yan-fang Song, Chen Li, Zhi-feng Li, Qin Chen, Zhi-min Yin, Recrystallization of Al-5.8Mg-Mn-Sc-Zr alloy, Transactions of Nonferrous Metals Society of China, 23 (2013).

DOI: 10.1016/s1003-6326(13)62858-7

Google Scholar

[9] F. Musin, R. Kaibyshev, Y. Motohashi, G. Itoh, High strain rate superplasticity in a commercial Al–Mg–Sc alloy, Scripta Materialia, 50 (2004) 511–516, https://doi.org/10.1016/j.msea.2017.01.091.

DOI: 10.1016/j.scriptamat.2003.10.021

Google Scholar

[10] Peng Yong-yi, Yin Zhi-min, Nie Bo, Zhong Li, Effect of minor Sc and Zr on superplasticity of Al-Mg-Mn alloys, Transactions of Nonferrous Metals Society of China, 17 (2007) 744-750, https://doi.org/10.1016/S1003-6326(07)60167-8.

DOI: 10.1016/s1003-6326(07)60167-8

Google Scholar

[11] F.C. Liu, Z.Y. Ma, and L.Q. Chen, Low-temperature superplasticity of Al–Mg–Sc alloy produced by friction stir processing, Scripta Materialia, 60 (2009) 968–971, https://doi.org/10.1016/j.scriptamat.2009.02.021.

DOI: 10.1016/j.scriptamat.2009.02.021

Google Scholar

[12] V.K. Portnoy, D.S. Rylov, V.S. Levchenko, A.V. Mikhaylovskay, The influence of chromiumon the structure and superplasticity of Al–Mg–Mn alloys, Journal of Alloys and Compounds, 581 (2013).

DOI: 10.1016/j.jallcom.2013.07.075

Google Scholar

[13] V. Mikhailovskaya, I. S. Golovin, A. A. Zaitseva, V. K. Portnoi, P. Dröttboom, and J. Cifre Effect of Mn and Cr Additions on Kinetics of Recrystallization and Parameters of Grain Boundary Relaxation of Al–4.9Mg Alloy, The Physics of Metals and Metallography, 114 (2013) 246 – 255,.

DOI: 10.1134/s0031918x13030125

Google Scholar

[14] A.V. Mikhaylovskaya, O.A. YakovtsevaI, S.Golovin, A.V. Pozdniakov, V.K. Portnoy, Superplastic deformation mechanisms in fine-grained Al–Mg based alloys, Materials Science and Engineering: A 627 (2015).

DOI: 10.1016/j.msea.2014.12.099

Google Scholar

[15] A.V. Mikhaylovskaya, V.K. Portnoy, A.G. Mochugovskiy, M.Yu. Zadorozhnyy, N.Yu. Tabachkova, I.S. Golovin, Effect of homogenisation treatment on precipitation, recrystallisationand properties of Al – 3% Mg – TM alloys (TM = Mn, Cr, Zr), Materials and Design 109 (2016).

DOI: 10.1016/j.matdes.2016.07.010

Google Scholar

[16] A.V. Mikhaylovskaya, A.G. Mochugovskiy, A.D. Kotov, O.A. Yakovtseva, M.V. Gorshenkov, V.K. Portnoy, Superplasticity of clad aluminium alloy, Journal of Materials Processing Technology 243 (2017).

DOI: 10.1016/j.jmatprotec.2016.12.025

Google Scholar

[17] A.V. Mikhaylovskaya, A.D. Kotov, A.V. Pozdniakov, V.K. Portnoy, A high-strength aluminium-based alloy with advanced superplasticity, Journal of Alloys and Compounds 599 (2014) 139–144, https://doi.org/10.1016/j.jallcom.2014.02.061.

DOI: 10.1016/j.jallcom.2014.02.061

Google Scholar

[18] A.D. Kotov, A.V. Mikhaylovskaya, M.S. Kishchik, A.A. Tsarkov, S.A. Aksenov, V.K. Portnoy, Superplasticity of high-strength Al-based alloys produced by thermomechanical treatment, Journal of Alloys and Compounds 688 (2016).

DOI: 10.1016/j.jallcom.2016.07.045

Google Scholar

[19] Z.Y.Ma, R.S. Mishra, M.W. Mahoney, R.Grimes, High strain rate superplasticity in friction stir processed Al–Mg–Zr alloy, Materials Science and Engineering: A 627 (2015) 31-41 https://doi.org/10.1016/j.msea.2014.12.099.

DOI: 10.1016/s0921-5093(02)00824-9

Google Scholar

[20] Z.Y. Ma, R.S. Mishra, M.W. Mahoney, R. Grimes, High strain rate superplasticity in friction stir processed Al-Mg-Zr alloy, Materials Science and Engineering A351 (2003) 148-153.

DOI: 10.1016/s0921-5093(02)00824-9

Google Scholar

[21] Z.Y. Ma, R.S. Mishra, Development of ultrafine-grained microstructure and low temperature (0.48 Tm) superplasticity in friction stir processed Al–Mg–Zr, Scripta Materialia 53 (2005) 75–80, https://doi.org/10.1016/j.scriptamat.2005.03.018.

DOI: 10.1016/j.scriptamat.2005.03.018

Google Scholar

[22] A.V. Mikhaylovskaya, A.G. Mochugovskiy, V.S. Levchenko, N.Yu. Tabachkova, W. Mufalo, V.K. Portnoy, Precipitation behavior of L12 Al3Zr phase in Al-Mg-Zr alloy, Materials Characterization 139 (2018).

DOI: 10.1016/j.matchar.2018.02.030

Google Scholar

[23] ZhanyingGuo, Gang Zhao, X.-Grant Chen, Effects of two-step homogenization on precipitation behavior of Al3Zr dispersoids and recrystallization resistance in 7150 aluminum alloy, Materials Characterization 102 (2015).

DOI: 10.1016/j.matchar.2015.02.016

Google Scholar

[24] LÜ Xin-yu, GUO Er-jun, Paul Rometsch, Wang Li-juan, Effect of one-step and two-step homogenization treatments on distribution of Al3Zr dispersoids in commercial AA7150 aluminium alloy, Transactions of Nonferrous Metals Society of China 22 (2012).

DOI: 10.1016/s1003-6326(11)61512-4

Google Scholar

[25] Anthony Rollett, F Humphreys, Gregory S. Rohrer, M. Hatherly, Recrystallization and Related Annealing Phenomena, second ed., Pergamon, Oxford, (1995).

Google Scholar